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Abstract −−−− This paper presents the development of a 

mathematical model to predict the perception of naturalness 

for a range of materials, based on an understanding of the 

relationship between the physical attributes of the material 

and the human sensory inputs. The work is being carried out 

under an European Union project called ‘Measurement of 

Naturalness’ (MONAT), which focuses on understanding 

the relationships between the physical properties of natural 

and synthetic materials and the visual and tactile sensory 

processes that lead to perceptual judgments of naturalness. 

Integral to the project is the development of novel 

measurement facilities with dynamic ranges and sensitivities 

that are relevant for the human sensory systems. The input 

data to the model are derived from psychophysical and 

physical studies on pre-selected wood, textile and stone 

samples. 
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1. INTRODUCTION 

Natural materials such as silk, cashmere and rosewood 

are generally perceived as being highly desirable and can 

command high prices Moreover, although we instinctively 

know whether something is natural or synthetic, the 

processes involved in this decision are complex and not well 

understood. 

The physical properties of a material or object, e.g. the 

roughness of the surface, its colour and texture, are 

generally assessed first by looking at it, and then reinforced 

or changed by touching it. Interactions between the material 

and the sensory transducers in our skin and eyes generate 

sensory impulses, which then pass along nerve fibres to the 

brain. The strength of these signals depends on factors such 

as the sensitivity of human sensors, the physical properties 

of the material and the environmental conditions. Once they 

reach the brain, the nerve impulses are combined and 

interpreted to generate a percept; in our case, whether or not 

the material is natural. But this perception also depends on 

factors such as memory, expectation and emotional state, 

and these factors can be just as important as the raw 

information transmitted by the nerve cells in our eyes and 

skin. Thus, although we have the feeling that we are in 

direct contact with our environment, and make decisions 

based solely on this information, this feeling is generally an 

illusion. Everything we perceive is determined indirectly, 

through transformation of physical stimuli into electrical 

signals and the transformation of these signals into 

conscious experience. By studying the complete sensory 

chain, from the properties of the material right through to 

what happens in the brain, this project is unravelling some 

of the workings of the perceptual process. 
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Fig. 1.  The perceptual process. 

Establishing the chain of perception for naturalness 

based on sensory inputs enables relationships between the 

physical attributes of the material and the neural and 

cognitive process to be identified. A major aim of the 

project is to develop mathematical models that can predict 

the perception of naturalness for a range of materials.  

2. UNDERSTANDING PERCEPTION IN PRODUCT 

DEVELOPMENT 

On completion of the project, manufacturers may use the 

information to develop improved materials that appear more 

natural, leading to products that are more desirable than 

those made from current synthetics, yet cheaper and more 

durable than those made from natural materials. These 

improvements in replica natural products do not only offer 



economic benefits, but will also help reduce the need to 

exploit the Earth’s dwindling supply of natural resources 

and may find application in other areas, such as improved 

virtual reality systems for surgical training. 

3. MATHEMATICAL MODELLING 

A detailed description of the experimental methods and 

sample preparation can be found in [1, 2, 3 and 4]. The first 

material studied was wood and its commercially available 

synthetic mimics: vinyl, laminate etc. A selected set of 30 

samples was measured in the materials and appearance 

laboratories at the National Physical Laboratory (NPL) to 

obtain physical characterisation data relevant to the visual 

and tactile human sensory systems. Psychophysical tests 

using a nominally identical set of samples were performed at 

the University of Barcelona. The psychophysical responses 

during the experiments were recorded in four ways: 

assignment to finite set of numerical scores (labelled 

scaling), magnitude estimation, ranked ordering and binary 

decision [4]. High correlations were found between each of 

the methods, providing evidence that the psychophysical 

responses represented perceptual characteristics. In the 

model below, the responses are represented by the data 

vector y .  
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Fig. 2.  Average psychophysical tests results using all methods 

and all participants for each modality. 

The results from the psychophysical experiments depend 

on which sense was used in assessing naturalness. For 

example, the naturalness of any individual wood sample 

might be scored differently in the visual mode and in the 

tactile mode. Moreover when both senses are involved in the 

decision making process the result is not always an average 

response from the two modalities. Sometimes the 

multimodal decision is dominated by one modality, so the 

result is almost the same as the tactile or visual mode alone.  

The physical data creates a set of feature vectors jx  for 

each sample, where ith element in the jth vector represents 

the measured value of the jth feature for the ith sample. The 

physical feature vectors can be very long, as a large number 

of physical features derived from the physical properties 

have been measured. In the case of physical measurements 

relevant to tactile sensation, for example, 81 features are 

determined. However only 30 different wood samples have 

been measured. This means that when modelling the 

relationship between the physical properties for these 

samples and the perceptual responses, it is necessary to 

reduce the number of the physical features to ensure that the 

model uses only the salient ones, to avoid over fitting of the 

data. 

3.1 Classification 

The first approach implemented in this project to 

characterise perceived naturalness was based on 

classification [1]. The challenge was to separate the samples 

into defined classes using their physical properties, 

represented by the feature vectors jx , as the basis for the 

discrimination. It is important to remember that the aim was 

not to classify the samples in terms of the actual type of 

material (i.e. truly natural or truly synthetic), but in terms of 

subjective human observations of the degree of naturalness, 

based on the psychophysical studies. The classes used were 

therefore defined as:  

(a) usually perceived as synthetic;  

(b) likely to be perceived as synthetic;  

(c) likely to be perceived as natural; and  

(d) usually perceived as natural.  

 

A linear discrimination algorithm was able to achieve a 

useful classification but only at the expense of poor 

predictive performance on new samples. Potentially a more 

sophisticated classification algorithm, based on support 

vector machines for example, might achieve better results. 

However, it was decided that regression techniques, 

described below, offered a better approach to predicting the 

degree of naturalness (interpreted as the probability that a 

human subject would classify a material as natural).  

3.2 Least squares regression 

Least squares regression techniques determine the 

estimate β̂  of the linear combinations jj jX xβ ∑= β  that 

best match the response vector y by minimising    

)()()( T βyβyβ XXF −−=
    (1) 

Because for our problem there are more feature vectors than 

observations it is possible to match the response vector 

exactly. For this reason the least squares approach has to be 

modified in order to reduce the number of feature vectors 

used.  

3.3 Partial least squares 

The Partial Least Squares (PLS) approach attempts to 

explain the behavioural response in terms of a set of linear 

combinations of the feature vectors in an iterative scheme. 

At the kth step in the algorithm, a new linear combination is 

added to the set in order to reduce the sum of squares as 

quickly as possible. The application of PLS gave good 

results in that it was possible to model the psychophysical 

responses in terms of a small number of combinations of the 

feature vectors. However, the PLS method does not easily 



indicate which feature vectors are important for modelling 

the response. 

3.4 LASSO algorithm 

The LASSO (‘least absolute shrinkage and selection 

operator’) approach was also implemented [5]. This 

regression method combines the advantages of subset 

selection regression, i.e., explaining the response in terms of 

a subset of features, and ridge regression methods, by setting 

an upper limit: 
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on the sum of the absolute values of the regression 

coefficients, with the result that the number of nonzero  

coefficients is kept small. The algorithm also employs a 

tuning parameter, s, given by: 
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where jβ̂  is the least squares estimate of the jth coefficient.  

For s =1, the model is not penalized and least square 

estimates are obtained; as s decreases towards 0 some 

coefficients become zero, hence effectively dropping 

features from the model. Note that this is different to ridge 

regression, where the coefficients generally do not hit zero. 

The output is a model with only a small number of non-zero 

coefficients. This means the model is relatively easy to 

interpret: if the predictive power of the model using the 

selected features is found to be acceptable, these features 

can then be assumed to be the most important ones. 

Leave-one-out cross-validation was applied to find the 

model with the minimal error of prediction (MSEP). Next, 

predictive accuracy randomisation tests were applied to find 

the model with the optimal number of physical variables [6]. 

The optimal model is defined here as the model with as few 

variables as possible, and an error of prediction not 

significantly different from the model with minimal error of 

prediction. Single mode models (visual-only, tactile-only), 

were created first to identify the most important physical 

features that determine the perceived naturalness.  

3.5 Leave-two-out double cross validation 

The set of wood samples used in this study included real 

wood samples were paired according to the processing and 

treatments applied to them. In other words, the full set of 30 

samples contained 14 real wood samples that had been 

derived from two different types of oak but then processed 

using just seven different methods. This led to pairs of 

samples that had been subjected to the same treatment: raw, 

weathered, sanded, waxed, oiled, varnished and 

manufactured (surface treated by a manufacturer to be 

suitable for wooden flooring)  

To ensure that the model is not sensitive to this pairing 

of the real wood samples, leave-two-out double cross 

validation tests were conducted. This involved creating 

models using 28 out of the 30 samples and calculating the 

MSEP using each model for the two remaining samples. 

This step was repeated for all possible combinations of two 

missing samples in the data set. This approach allows 

observation of the model performance when both of, for 

example, the raw samples were removed from the data set. 

Moreover double cross validation produces more rigorous 

results than single cross validation.  

4. RESULTS  

A complete tactile model for the wood samples has been 

developed. The mathematical techniques developed as part 

of this tactile-mode model are transferable to models for 

different materials such as textiles and stones. 

4.1 Tactile modality model for wood  

Eighty-one physical features related to tactile perception 

of 30 wood samples were used in the first stage of the 

modelling. The physical measurements covered: 3D texture; 

friction coefficients in four directions, including circular 

movements that mimic finger exploration of the samples for 

the psychophysical experiments; hardness; and thermal 

properties. Leave-one-out cross-validation for this model 

gave a minimum value for the mean square error of 

prediction (MSEP) when 23 out of 81 variables were used to 

build the model. This number was considered too high, 

meaning the model would not be easy to interpret, so a 

randomisation test was performed to justify the prediction 

accuracy when less than 23 variables are used in the model. 

The results show that the number of variables in the model 

could be reduced from 23 to 6 without a significant change 

in prediction accuracy.  

Fig. 3.  Histogram presenting frequency of selected variables 

used in 30 leave-one-out models. The negative values on the x-

axis indicate variables that have been dropped from the model. 



To ensure that the first variables selected in the model 

are consistently chosen, the frequency of each individual 

variable has been checked for 30 models in which one 

sample (i.e. one feature vector) was missing. The histogram 

shown in figure 3 presents the results of this test. In all 30 

models, each based on data from 29 samples, at least 5 of 

the first steps in the LASSO variable selection were almost 

the same.  

Figure 3 confirms that even when the data relating to one 

of the samples is missing in the model, the same physical 

features are selected as being important. To assess the 

robustness of the selection of the six features another test 

was performed. Six new models were created, each with 80 

physical variables instead of 81 with one of the six 

“important” features deleted from the feature set. This test 

showed that the five remaining features were always 

selected from the 80 features with the missing feature 

replaced with another one. Moreover, the new feature was 

always very highly correlated with the feature that had been 

replaced. The model performance measured by the R
2 

(degree of correlation) value and MSEP did not show a large 

difference except when the first variable (the most highly 

correlated with y) was missing. This test suggested that the 

set of 81 features could be reduced by removing highly 

correlated features.  

4.2 Feature reduction using expert opinion 

 The feature reduction process was conducted using two 

different methods. In the first, an experienced researcher in 

material science at NPL selected a set of 16 primary features 

that were considered to describe fully the key properties of 

the materials under study. For example, the aforementioned 

friction coefficient measurements were performed in four 

different directions (x, y, x-y and circular) but for the 

purposes of the reduced model only the x and y directions 

were used. The results for the x-y and circular directions can 

be determined from a combination of the forces in the x and 

y directions and these can therefore be considered as 

redundant data. Similarly, the friction coefficient in any one 

direction can be characterised using 11 different variables 

that are all derived from the same raw data and are therefore 

highly correlated. Therefore only the average and standard 

deviation of this parameter were chosen in the reduced 

dataset, and ultimately the high correlation between the x 

and y directions allowed these too to be combined, thus 

enabling the number of variables describing the friction 

coefficient characteristics of each sample to be reduced from 

44 to just 4. Similar rules were applied to the rest of the 

physical measurements.  

4.2 Feature reduction using SVD  

The second method used the singular value 

decomposition (SVD) method. The aim was to find the 

subset of the feature vectors that produced the least mutual 

correlation. This analysis was done purely on the basis of 

the feature vectors jx . (By contrast the PLS and LASSO 

algorithms use a subset selection approach targeted at 

approximating the response vector y.)  

Both the expert and SVD methods selected similar 

features. The final set of reduced features had 16 variables 

that have been chosen by the specialist scientist and then 

improved by feature selection using SVD. This set was used 

as the input data to Lasso regression and found to give the 

best regression performance and has the minimum MSEP 

for 5 variables. Using this combination of methods, the most 

salient features for the tactile perception of the naturalness 

of wood samples were found to be: 

(a) Friction coefficient y average 

(b) Valley void volume of the surface 

(c) Fractal dimension  

(d) Texture direction index 

(e) Texture aspect ratio 

 

Figure 4 presents the results of the model fitting and 

model prediction. The model is built with the five features 

listed above. 

Fig. 4.  The performance of the final model for perceived 

naturalness of wood samples using the tactile modality. 

R2=0.815. 

The MSEP calculated for leave-one-out validation was equal 

0.0134, increasing to 0.0135 for leave-two-out validation, 

where the optimal number of variables used in the model 

was still 5. The values plotted in figure 4 as the ‘Model 

prediction leave two out’ are the averaged responses over 29 

possible combinations of missing pairs for each sample 

number.  

4.3 Leave two out – extreme case 

The pairing issue is described in more detail below and 

the results are plotted in figure 5, where only the models 

using the pair of same-treatment specimens were removed 

from the dataset. Therefore the perceived naturalness value 

was predicted for a completely unknown observation. A 

significant difference in model prediction was obtained for 

samples number 2 and 9; these are the weathered pair of 



specimens. The weathered woods were perceived as the 

most natural (maximum on the perceived naturalness scale), 

but when neither of them was included in the model-

building process the perceived naturalness scale was 

reduced. The model was then attempting to perform a 

challenging task, to predict a response value y that was 

beyond fitting range. Actually this was not achieved with a 

high degree of accuracy (see figure 5). The explanation of 

the poor model prediction in this case lies in the salient 

features that were selected in the first five steps of the Lasso 

regression. One of the five most important physical features 

from the full model (fractal dimension) was replaced by the 

parameter ‘ten points height of selected area’, which is not 

well-correlated with fractal dimension.  

 

Fig. 5.  The performance of the model for perceived 

naturalness for 14 real wood samples; leave two out present 

prediction for the missing pairs. 

Figure 6 shows the feature space using parallel 

coordinates, where the first axis on the left hand side is the 

sample axis, next are the five most salient physical features 

and the last vertical axis is the new variable that was used in 

the model when both weathered specimens were missing. 

The black lines correspond to the missing samples and the 

fourth axis from the left represents fractal dimension. The 

noticeable extremes in the fractal dimension values for this 

pair and the lack of this physical property in the leave-two- 

out model explain the inaccurate prediction in this particular 

case. In the following, sixth, step of the Lasso algorithm the 

added variable was fractal dimension and the prediction was 

significantly better. The assumption can be made that fractal 

dimension is a key feature to express the uniqueness of the 

weathered wood samples. 

 
Fig. 6.  Parallel coordinates to visualise correlation between 

salient physical features in the model. The two black lines 

correspond to two weathered samples. 

5. FUTURE WORK 

The project is currently focusing on identifying the 

samples that best encapsulate the extremes of the physical 

parameters as identified using the perceptual model. These 

samples will be used in neuroimaging (fMRI) investigations 

in order to map the neural (sensory and cognitive) responses 

to different physical variables. These results will be 

incorporated in the model that links psychophysics with the 

physical characteristics, with the expectation that this will 

enhance its validity and accuracy of prediction when applied 

to new samples.  

 

A new set of 20 wood and wood effect samples is being 

prepared in order to validate the final model more fully. 

Like the original sample set, these include a range of natural 

and synthetic types, but all the samples are different from 

those used in the original set.  

Work is also underway, using the methods described 

above, to create models for: 

(a) Visual and bimodal perception of the naturalness 

of the wood samples; and  

(b) Perception of the naturalness of the remaining 

types of material (textile and stone) in all 3 

modalities.  
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