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Abstract − Knowledge of the transfer function of a force 

transducer is required in order to determine a transient force 
from the transducer’s output signal. We describe a linear 
least-squares fit method for system identification to estimate 
the transfer function from sinusoidal force calibration 
measurements, and we consider the evaluation of 
uncertainty associated with the obtained estimate. In 
applying this method to different calibration measurements 
it is demonstrated that consistent results are obtained for the 
transfer function. 
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1.  INTRODUCTION 

The requirements for measuring forces in industrial and 
research applications become increasingly challenging. 
Currently, static methods in which transducers are calibrated 
by static weighting are widely accepted. However, in order 
to retrieve a transient force signal, the dynamic input-output 
behaviour of an employed force transducer has to be 
accounted for. Since the dynamic input-output behaviour 
cannot be determined from a static calibration, dynamic 
calibrations of force transducer are required. Here, we use 
the method proposed by Kumme [1] which applies the 
inertial force of a mass to the transducer. Since the mass is 
attached to the transducer, the resulting frequency response 
of the transducer also depends on the attached mass. 

Fig. 1 shows an experimental setup for dynamic 
calibration of a force transducer. The setup allows 
acceleration measurements of the transducer base and the 
loading mass using high-precision accelerometers. 
Typically, these signals, together with the simultaneously 
recorded electrical transducer output, are used to 
characterize the dynamic input-output behaviour of a 
transducer.  

In contrast to static measurements, the analysis of 
dynamic measurements requires the  application of 
advanced tools from Digital Signal Processing (DSP) [2]. 
Likewise, the calculation of uncertainties [3] is much more 
involved as compared to the analysis of static calibration 
measurements. We propose methods for both tasks, and we 
demonstrate the benefit of the proposed procedures by their 
application to different dynamic calibration measurements. 

 

Fig. 1 Experimental setup for dynamic calibration of a force 
transducer. 

2.  IDENTIFICATION OF TRANSFER FUNCTION 

Fig. 2 shows a force transducer schematically. When the 
transducer is accelerated at the transducer basis an initial 
force F(t) is acting on the transducer spring element which 
is given by the acting mass at the head side of the transducer 
and by its acceleration. 

 

Fig. 2.  Schematic diagram of a force transducer, modelled by the 
base and head masses mb and mh, and the spring elements d and k 

representing damping and stiffness. 
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The resulting displacement )()()( hb txtxtx −=  

generates the transducer’s electrical output signal which is 
proportional to the applied force.  

2.1. Model  

From the model illustrated in Fig. 2 we obtain the 
following relation between force and displacement 

 )()()( hbhbhh tFxxdxxkxm −−+−= &&&& . (1) 

When the acting force )(tF  is generated as inertial force 

of the attached mass m , we write h)( xmtF &&=  and obtain 

with mmM += h  the transfer function 
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which describes the relationship between the 
acceleration bx&&  and the transducer output signal )(txρ . 

The constant ρ  realizes the transformation of the 

displacement )(tx  into a force signal. The input (i.e. bx&& ) 

and the output (i.e. )(txρ ) can be measured, and hence the 

frequency response of the transducer determined, using 
sinusoidal acting inertial forces [1]. 

2.2. Estimation of model parameters 

We refer to the transfer function (2) for which measured 
data provide amplitude and phase values of the 
corresponding frequency response )( ωjG  at selected 

frequencies [1,4]. For this kind of frequency response the 
linear relation [5] 

 1 2
1 2 3( ) ( )TG j jω µ ωµ µ ω ω− = + − = f µ  (3) 

is obtained for the parameter vector 

 1 1 1
1 2 3( , , ) ( , , )T k M d Mµ µ µ ρ ρ ρ− − −= =µ  (4) 

and  

 2(1, , )T jω ω= −f .  (5) 

The relation (3) is used to estimate the parameters iµ  by 

a linear fit and then to calculate the transfer function 
parameters, k , d , ρ . It is presupposed that the combined 

mass, hmmM += , is known from separate  measurements. 

Further it is assumed that reliable uncertainties have been 
assigned for the measurements of the inputs and outputs. Let 

)( ii SS ω=  and )( ii ωϕϕ =  denote the resulting amplitude 

and phase values of the frequency response )( ωjG  with 

associated uncertainties )( iSu  and )( iu ϕ  at frequencies iω , 

Li ,,2,1 K= . These measurements are combined by the 

vector  
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and the associated uncertainties constitute the variance-
covariance matrix yV . The parameters iµ  are estimated 

according to  
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where H  denotes the matrix 
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The uncertainties of the parameter estimates are then given 
by the variance-covariance matrix  

 11
ˆ )( −−= HVHV y

T
µ . (9) 

Finally, from µ̂  and µ̂V , estimates of the physical 

parameters ρ,,dk  are then calculated including their 

associated uncertainty matrix. Note that a 2χ -test [5] 

should be applied in order to check that the model and the 
data are consistent. 

3.  RESULTS 

The proposed identification procedure has been applied 
to dynamic calibration measurements.  

 

Fig. 3.  Magnitude and phase of the measured (error bars) and 
estimated (solid line) frequency response )( ωjG  from a 

calibration experiment ( kg923.8=m , kg463.0h =m ). 

Different masses were attached to the transducer to 
realize different acting inertial forces. Fig. 3 shows 



measurements of the frequency response )( ωjG  at discrete 

frequencies iω  for 8.923m =  kg within the frequency range 

from 10 Hz to 1600 Hz. Magnitude and phase measurements 
of )( ωjG  are characterized by standard uncertainties of 2% 

and 1 degree, respectively. The measurement results are 
displayed together with associated standard uncertainties. 

 

Fig. 4.  Model parameter estimates including expanded 
uncertainties for 0 /S M kρ= , k  and d  obtained from calibration 

measurements with different masses M. 

By applying the identification procedure to the 
frequency response data we obtain estimates of the transfer 
function parameters together with associated uncertainties. 
Using these estimates together with the model, the 
frequency response can then be evaluated at any frequency, 
cf. Fig. 3. 

Fig. 4 shows the parameter estimates of 0 /S M kρ= , k  

and d  obtained for five different masses M within the 
range from 3 kg to 11 kg. Taking into account the associated 
uncertainties of the parameter estimates, the employed 
model appears to be suitable, and the model parameter 
estimates for damping and stiffness, d  and k , are 
essentially consistent with rather small uncertainties. 
Furthermore, the parameter estimates for 0 /S M kρ=  are 

consistent with the expected linear dependence on the mass 
M . 

Note, that uncertainties obtained for the transfer function 
parameters are based on the uncertainties which have been 
assigned to the magnitude and phase measurement results. 
For each of the individual measurements related to a loading 
mass m , the consistency of the fit results could be approved 

by a 2χ -test. Additional uncertainty sources such as 

mounting of different loading masses have not been 
considered, and it has been assumed that the chosen 
transducer model is not affected by different attached 
masses and their mounting. 

4.  OUTLOOK 

Assuming the employed transducer model to be valid, 
the dynamic behaviour of the transducer can be calculated 
for different experimental setups. The dynamic behaviour of 
the transducer depends on the mass acting on the transducer 
within a given measurement setup [1,4]. For instance when 
the transducer is fixed to a base and the loading mass m  is 
mounted, we can describe the equation of motion by 

 )(tFkxxdxM =++ &&& , (10) 

where )(tF  is the external force to be measured. With 

respect to the acceleration MtFta /)()( = , the frequency 

response then reads 
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Given the estimates, k̂ , d̂  and ρ̂ , an estimate of the 

transient force ( )F t  including an associated uncertainty can 

then be retrieved from the output signal of the force 
transducer. 

5.  CONCLUSIONS 

A method for the analysis of dynamic calibration 
measurements using sinusoidal forces has been proposed. 
The analysis is based on a second-order model to describe 
the input-output behaviour of the force transducer. A system 
identification procedure based on linear least-squares has 
been described including the evaluation of uncertainties 
associated with the estimated transfer function. Application 
to different measurements yielded consistent results which 
encourages the use of the proposed methods. 
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