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Abstract  The evaluation of uncertainties according to the 

„„Guide to the Expression of Uncertainty in Measurement‟‟ 

is presented in this study based on a novel Fuzzy-random-

variables approach. Whereas the classically proposed 

methods like Monte Carlo techniques treat all uncertainties 

as having a random nature, the fuzzy technique distinguishes 

between aleatoric and epistemic uncertainties. The aleatoric 

components are modeled in a Monte Carlo framework, and 

the epistemic uncertainties were treated with fuzzy 

techniques. The applied procedure is outlined showing both 

the theory and a numerical example for the evaluation of 

uncertainties in an application for terrestrial laserscanning. 

Keywords: GUM, Monte Carlo, Fuzzy technique 

1. INTRODUCTION 

A central issue within computational engineering 

disciplines is the modeling of uncertainty. The "Guide to the 

Expression of Uncertainty in Measurement" (GUM) is the 

standard reference in uncertainty modeling in engineering 

and mathematical science, cf. [1]. GUM groups the 

occurring uncertain quantities into "Type A" and "Type B". 

Uncertainties of "Type A" are determined with the classical 

statistical methods, while "Type B" is subject to other 

uncertainties like experience with and knowledge about an 

instrument and procedure, respectively. Whereas the 

uncertainties of the quantities of "Type A" can be estimated 

based on the measurement itself, the uncertainties of the 

quantities of "Type B" are based on expert knowledge, e.g., 

the technical knowledge about an instrumental error source. 

GUM defines a scalar output quantity y  as a function of a 

vector z  of input quantities  

 1 2 n
y f z , z ,..., z ) f ),( ( z  (1) 

with n  the number of input quantities. Each component 
i

z  
can be a quantity ([1], chapter 4.1.3): 

 “…, whose values and uncertainties are determined 

in the current measurement (original measurement).” 

 “…, whose values and uncertainties are brought into 

the measurement from external sources, like the 

values from a calibration for an instrument.” 

According to [2], the uncertainty classification of the input 

quantities with respect to its sources can be grouped into 

aleatoric and epistemic uncertainty. The aleatoric 

uncertainty arises because of unpredictable variation in the 

performance of the modeled system or the environment. 

This uncertainty is referred as irreducible uncertainty. 

Aleatoric uncertainty is caused mostly because of not clearly 

objective description (measurement value cannot be 

precisely evaluated). An example is a distance measurement 

under non noticeably changing atmospheric conditions. 

The epistemic uncertainty describes the reducible 

component of the uncertainty, which is due the lack of 

knowledge about the behavior of the system/object. The 

epistemic uncertainty can, in principle, be eliminated with 

sufficient study and, therefore, expert judgments may be 

useful in its reduction. A good example is a reflector-less 

distance measurement which has an epistemic uncertainty 

due to the surface properties. If an expert can provide the 

surface properties, the epistemic uncertainty can be 

significantly reduced by a calibration process. 

     The common procedure for the representation of 

aleatoric and epistemic uncertainty is the traditional 

probability theory. In case of knowledge about the 

probability density function (PDF) of the input quantities, 

[3] suggested to use Monte Carlo (MC) simulations instead 

of the classical treatment of the combined uncertainties in 

the classical GUM. [4] recommended the determination of 

the uncertainty according to GUM by a Bayesian confidence 

interval using MC simulation. This approach has been 

explained in detail and applied to the results of terrestrial 

laserscanning (TLS). 

    The MC-technique assumes that aleatoric and epistemic 

uncertainties are appropriately handled by means of PDFs.  

Unfortunately, MC modeling leads to a rather optimistic 

evaluation of uncertainties.  Optimistic evaluation means 

that, e.g., the confidence intervals of output quantities are 

too narrow in comparison to the actual uncertainty about the 

true value. This shall be highlighted with two references. On 

the one hand [5] presents in his paper a too optimistic 

estimation of confidence intervals for the measurement of 

the speed of light. On the other hand [6] illustrated a 

difference between confidence intervals for the 

measurements of the astronomical unit with the true values. 

Therefore in this paper the epistemic uncertainty will be 

treated in a separate form using the fuzzy set theory [7]. This 

representation, which will be called fuzzy approach, leads to 

a reluctant or even more pessimistic evaluation of the 

uncertainties. The fuzzy techniques have proven to be an 



appropriate solution for the description of uncertainties and 

were applied in different science and engineering 

applications, see, e.g., [2]. The basic idea for the fuzzy 

approach in this paper is related to the so-called Fuzzy-

Random-Variables (FRV) which are based on a combination 

of probability theory and fuzzy theory, see [8]. In this paper 

the FRV-approach shall be discussed theoretically and using 

a practical example in TLS. 

    The paper is organized as follows: First a FRV-approach 

to handle measurement uncertainties is introduced. Then, in 

Section 3 the FRV-approach is applied to TLS and the 

obtained results are critically compared to the classical MC-

techniques. The paper finishes with a discussion and 

conclusions. 

2. UNCERTAINTY MODELING WITH A FRV-

APPROACH 

In this section, a FRV-approach to uncertainty modeling 

in the context of GUM is introduced. In the FRV-approach 

we distinguish between aleatoric and epistemic uncertainties 

in the propagation process of the uncertainties of the input 

quantities to the output quantity y . Whereas the aleatoric 

part is treated with MC techniques based on probability 

theory (see Section 2.1), epistemic uncertainty is propagated 

by means of a range-of-values search problem (see Sections 

2.2 and 2.3). The aleatoric component is superposed with 

the epistemic component of uncertainty without any 

distribution information. Both types of uncertainty are 

modeled in a comprehensive way, using fuzzy intervals. 

2.1. Modeling of the aleatoric uncertainty component  

The aleatoric component of the uncertainty is treated 

with MC techniques. Therefore, the aleatoric uncertainty 

component is described by PDFs. The GUM suggests in 

some cases to select the PDF of the input quantities as 

rectangular, triangular, and trapezoidal [1]. In these cases, it 

is hard to obtain the estimate of the uncertainty for the 

output quantity in a closed mathematical form. With a set of 

generated samples the distribution function for the value of 

the output quantity in Eq. (1) will be numerically 

approximated. MC-techniques to estimate the uncertainty 

include the following three main steps [9]:  

In the first step, a set of random samples, which have the 

size n , is generated from the PDF for each random input 

quantity 
1 2 n

Z , Z ,..., Z .
 
The sampling procedure is repeated

M  times for every input quantity. In a second step, the 

realizations 
(i )

y  of the output quantity will be calculated by: 

 

(i) (i) (i) (i) (i)

1 2 n
y f z , z ,..., z ) f ).( ( z  (2) 

With the i 1...M  generated samples of Y , we obtain an 

estimate of the PDF for Y . In the last step, particularly 

relevant estimates of any statistical quantities can be 

calculated. The most important statistical quantities are the 

expectation ŷ  of the output quantity:  

 
M

(i)

i 1

1
ŷ f ),

M
(



  z  (3) 

and the estimate of the variance 
2

y
̂  of the output quantity as 

well, see [10]: 

 
M

2 (i) (i) T

y

i 1

1ˆ ˆ ˆf ) y) f ) y) .
M

( ( ( (


    z z   (4) 

Additionally, the computation of the confidence interval 

conf ,MC
y [y, y]  of the estimate of the output quantity with the 

significance level of   is of major importance when 

evaluating of uncertainties. To compute the confidence 

interval by MC simulation, one has to sort the independent 

samples 
(i )

y  from the smallest to largest; an approximate 

100 (1- 2 )%   for the output quantity y  is given in [4].  

2.2. Modeling of the epistemic uncertainty component 

The epistemic part of the uncertainty is modeled with the 

aid of fuzzy-theory [7]. Each uncertain quantity 
i

z  is 

exclusively described in terms of fuzzy intervals. A fuzzy 

interval A  is uniquely defined by its membership function 

 
A

m x  over the set   of real numbers with a membership 

degree between 0 and 1: 

  
A

A : (x,m (x)) x 
    (6a) 

with  
A

m : 0,1  . The membership function of a fuzzy 

interval can be described by its left (L) and right (R) 

reference function (see also Fig. 1):  
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with 
m

x  denoting the midpoint, r  its radius, and 
l r

c , c  

the spread parameters of the monotonously decreasing 

reference functions (convex fuzzy intervals). The cut  

with  [0,1]  of a fuzzy interval A  is defined by: 

  A
A : x X m (x) .


   

   (7) 

 

Fig. 1.  Fuzzy interval and its cut.   

The lower 
,min

A ,


  and the upper bound 
,max

A

  of an

cut and its radius 
,r

A


  are:  



  
   

 

,min ,max

,r ,max ,min

A min A and A max A

A A A / 2.

   

  

 

 

   

  

    
 (8)  

The integral over all cut equals  
A

m x : 

 
1

A A

0

m (x) m (x)d .


    (9) 

2.3. The FRV-approach to handle both uncertainties 

In order to combine the uncertainties with the methods 

described in the Sections 2.1 and 2.2, the aleatoric and 

epistemic components of the uncertainties are characterized 

as a special case of fuzzy theory, so called Fuzzy 

Randomness [2]. 

In this concept fuzzy intervals serve as basic quantities; 

their midpoints 
m

x  are considered in the following as 

random variables and their spreads 
l r

c , c  describe the range 

of the uncertainty for the epistemic uncertainties. If one 

component has random uncertainty only, then this input 

quantity only consists of a single midpoint with radius r 0  

and without a left and right reference function. In contrast to 

the MC-techniques, the membership function of a fuzzy 

interval cannot be interpreted in a probabilistic meaning. 

Therefore the propagation of the epistemic uncertainties has 

to be modified accordingly. In the fuzzy case, we model the 

influence of an epistemic component of the uncertainty on 

the output quantity y . Figure 2 shows the interpretation of a 

fuzzy interval in the here presented approach. 

 

Fig. 2.  Interpretation of a fuzzy interval. 

The construction of the membership function can be 

based on expert knowledge. Each expert provides a range of 

values (an interval) for the epistemic uncertainty which he 

considers as realistic. The level   of one describes the 

range of values where all experts agree that these values are 

possible (most optimistic outcome). The level   of zero 

represents the most pessimistic expert opinion for the range 

of values for the epistemic uncertainty. The above described 

procedure to construct fuzzy intervals is based on the theory 

of nested sets; see [11]. For a detailed description in the 

context of uncertainty propagation in parameter estimation 

and hypothesis testing the reader is referred to [12] and [16].  

2.4. Evaluating the uncertainties with an optimization 

The extension principle, introduced by [7], serves as 

basic role to propagate both types of uncertainties in the 

FRV-approach. In case of the introduced fuzzy intervals the 

computation of the membership function 
y

m (y)  for the 

output quantity is based on the cuts  of the input 

quantities 

z  within an optimization problem of the 

following target function, see, e.g., [13]: 

 
,max,min

,max,min

,min

,max

i i i

i i i

z [z ,z ]

z [z ,z ]

y min f )

y max f )

(

(

















 

 





z

z
 (10) 

with 
1

y y

0

m (y) m (x)d


  

 

and 
y ,min ,max

m y , y
  
   

  . The 

approximate midpoint of the fuzzy interval for the output 

quantity 
m

y  is: 

 
m m mm 1 2 n m

y f z , z ,..., z ) f ).( ( z  (11) 

Finally, the confidence interval 
conf ,Fuzzy

y  in the FRV-

approach (at the  -level) is obtained by the combination of 

both uncertainty components: 

 
conf ,Fuzzy ,r ,r

y [y y ; y y ]
 

     (12) 

Whereas the  -level of zero represents the pessimistic 

outcome, the optimistic outcome is obtained for 1.  Only 

the random uncertainty components from the input 

quantities z  contribute to the lower and upper bound of the 

MC confidence interval 
conf ,MC

y [y, y] . Figure 3 shows a 

diagram with the main steps of uncertainty modeling with a 

different treatment of the aleatoric and epistemic 

uncertainties. 

 

Fig. 3.  Treatment of uncertainty components in FRV-approach.



Table 1.  Uncertainties for the input quantities. 

Input quantity 
i

z  
Uncertainty 

component 

pdf / membership 

function 
Uncertainty Type 

1
z  aleatoric normal 3 mm   A 

2
z  epistemic triangular 

0,r

a a 3 mm

z 3 mm











 
 B 

3
z  aleatoric normal 0.9 mm  (8987) B 

4
z  aleatoric normal 7.2 mm  (8987) B 

5
z  aleatoric normal 20 mgon   A 

6
z  epistemic triangular 

0,r

a a 20 mgon
z 20 mgon








  B 

7
z  epistemic rectangular 

0,r

a a 10 mgon
z 10 mgon




 
  B 

3. APPLICATION OF THE FRV-APPROACH TO TLS 

In this section a short numerical example for the 

approach, presented in Section 2, is shown. The aim of the 

application is to detect the vertical displacements of a bridge 

under load, e.g., due to car traffic or train crossings. For this 

reason, a laserscanner of type Leica HDS 4500 was placed 

beneath the bridge; the measurements in the "Profiler Mode" 

span the green plane in Fig. 4.  

The laserscanner carries out very fast distance and angle 

measurements and the measurements are influenced by 

vibrations due to traffic load of the bridge. The time series 

of the vertical height 
th  of the bridge at the points 1831 and 

8987 can be expressed in the local coordinate system of the 

laserscanner by the following equation: 

 
 

t t t
h s cos   (13) 

with the slope distance 
t

s  and the zenith angle 
t

  measured 

by the laserscanner. The output quantity:  

 
t

q

t t

t 0

1
y w h h

q 

     (14) 

depends on several input quantities 
i

z . The number of 

measured epochs in Eq. (14) is q. The input quantities can 

be divided into two main groups: input quantities depending 

on the distance or on the zenith angle, respectively. 

 

Fig. 4. Position of the laserscanner beneath the bridge. 

 

In detail, the output quantity 
scan

y w (x, t)  depends on the 

following input quantities 
i

z : 

 Uncertainty of the distance (
1

z , Type A), and 

their additional constant (
2

z , Type B) 

 Distance depending term for the uncertainty of 

the distance measurement (
3

z , Type B) 

 Incidence angle of the measured distance under 

the bridge (
4

z , Type B) 

 Uncertainty of the zenith angle (
5

z , Type A) 

and the vertical index error (
6

z , Type B) 

 Vertical resolution for the zenith angle (the step 

width of the motor) (
7

z , Type B) 

The uncertainties and the pdf / membership function for 

the input quantities 
i

z  are given in Table 1. The 

assumptions for the uncertainties of 
1

z , 
5

z  and 
6

z  are 

based on the technical data from the manufacturer and for 

the uncertainties of 
2

z , 
3

z  and 
4

z  on [14] and for 
7

z  on 

[15]. The input quantities 
3

z  and 
4

z  have a correlation of 

0.5, according to [4]. The numbers 8987 and 1831 in the 

brackets represent the point number (see Fig. 2). 

3.1. Uncertainties obtained by the FRV-approach  

In the FRV-approach the treatment of the aleatoric and 

the epistemic component in the propagation process of the 

uncertainties is different, see Section 2. The uncertainties 

were treated with the techniques presented in the Sections 

2.3 and 2.4. 

According to Section 2.4 we obtain the epistemic 

component of the uncertainty of the output quantity 
t

w  for 

0   and 1   with Eq. (8), (10) and (11). The results are 

given in Table 2. 

Within the propagation process of the epistemic 

component, the radius 
,r

z

  of all aleatoric components 

i
z  

from Table 1 is zero. In the presented propagation process 

an epistemic uncertainty component cannot be reduced by 

repeated measurements due to the mathematical rules of 

fuzzy-theory [12]. 



Table 2. Epistemic uncertainty obtained by the FRV-approach. 

Fuzzy result (epistemic component) Point 8987 

1,r 1,max 1,min
y (y y ) / 2

  
     4.8 mm 

0,r 0,max 0,min
y (y y ) / 2

  
     16.1 mm 

 

For the propagation process of the aleatoric components 

with the methods described in section 2.1, the uncertainty of 

the input quantities with an epistemic uncertainty component 

is set to zero, and we obtain the aleatoric uncertainty of the 

output quantity for 100000 MC-runs. The results are shown 

in Table 3. 

Table 3.  Aleatoric uncertainty obtained by the fuzzy technique. 

Fuzzy result (aleatoric component) Point 8987 

y
̂  5.4 mm 

conf ,MC
y [y, y]  [-10.6,10.7] mm 

 

Finally, we obtain the confidence interval for the fuzzy 

approach with Eq. (11) for 0   and 1  . Table 4 

represents the computations for the confidence interval. 

Table 4.  Confidence interval obtained by the fuzzy technique. 

Fuzzy result (confidence interval) Point 8987  

conf ,Fuzzy 1,r 1,r
y [y y ; y y ]

 
     [-15.4,15.5] mm 

conf ,Fuzzy 0,r 0,r
y [y y ; y y ]

 
     [-26.7,26.8] mm 

3.2. A best and worst case scenario  

The last example deals with a case study for different 

magnitudes for the occurring uncertainties. In order to 

evaluate the consequences of changing magnitudes for the 

uncertainties, two scenarios are realized: A best case 

scenario with a small uncertainty of the input quantity of 

7
z (a a ) / 2 20

 
   mgon and a worst case scenario with 

high uncertainties of 
7

z 50 mgon. Please note, that the 

value of the assumed uncertainty is still realistic in case of 

rapidly registered measurements of a laserscanner.  

A geometrical interpretation of the epistemic uncertainty 

of the height difference 
t

w  (output quantity) in the FRV-

approach is given in Fig. 5. The range of values for the 

epistemic uncertainty can be seen as a shift in the 

distribution. For a clear representation the distribution of the 

random errors of the output quantity (obtained by the MC 

technique) is shown at the lower and upper bound of the 

epistemic uncertainties. The left part of the Figure shows the 

best case scenario with small uncertainties and the right 

represents the worst case scenario with high uncertainties 

for input quantity 
7

z .
 
Additionally, in the Fig. 5 we see the 

comparison between the confidence intervals of the FRV-

approach and the GUM for the quantity 
t

y w .  The results 

for the  levels 0.1 (pessimistic outcome, lower part of 

Fig. 5) and 1 (optimistic outcome, upper part of Fig. 5) are 

given.  

When comparing the results of the fuzzy confidence 

interval with the results of the classical GUM one can 

clearly see that the fuzzy confidence intervals are 

significantly larger. This is due to the reason that the 

epistemic component dominates the uncertainty budget in 

the example presented here.  

The combination of both uncertainty components on the 

level of  cuts can be interpreted in such a way that the 

aleatoric uncertainty can obtain a translation. The range of 

this translation is described through the epistemic 

uncertainty (refer to Fig. 5). The FRV-approach combines 

both types of uncertainty in one single quantity. It is always 

interpretable whether the epistemic or the aleatoric 

components account for the main part of the total 

uncertainty. 

4.  CONCLUSIONS 

 In this paper a measurement equation was analyzed with 

multidimensional input quantities and a one dimensional 

output quantity. A FRV-approach was used to handle and to 

propagate aleatoric and epistemic uncertainties. Two 

important outcomes can be stated from the results obtained 

in the paper: First, the FRV-approach allows dealing with a 

pessimistic and optimistic outcome for the uncertainty of the 

output quantity. Second, it turns out that the difference 

between classical uncertainty modeling with MC-techniques 

and the FRV-approach increase significantly if some of the 

input quantities have a noticeable epistemic component. 

This is due to the fact that the epistemic uncertainty in the 

FRV-approach cannot be reduced by repeated measurements 

due to the mathematical rules of fuzzy-theory. Therefore the 

FRV-approach provides new important techniques for the 

modeling of the measurements uncertainties, especially in 

the field of laserscanning. 
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