
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

EVENT-BASED DISTRIBUTED MEASUREMENT SYSTEM FOR PQ
MONITORING APPLICATIONS

Fabrizio Ciancetta 1, Edoardo Fiorucci 1, Giovanni Bucci 1, Carmine Landi 2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione, University of L’Aquila

Poggio di Roio, 67040, L'Aquila, Italy, {fabrizio.ciancetta, edoardo.fiorucci}@univaq.it
2 Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli

Via Roma 29, 81031, Aversa (CE), Italy, {daniele.gallo,carmine.landi}@unina2.it

Abstract − The problem of locate disturbance sources in

power network is a critical task. Several methods based on
multi point measurement techniques have been proposed in
the last few years proving a good contribution on this filed
[1-2]. In this paper an event-based distributed measurement
system for power network has been developed. The system
adopts a hierarchical approach to monitor the power
network: the sensing parts are measurement systems which
perform the monitoring of Power Quality (PQ) parameters
such as Total Harmonic Distortion (THD) and Root Mean
Square (RMS); the management part is a supervisor node
which uses an asynchronous symmetric communication
protocol to exchange information with the devices
connected to the network. When an abnormal behaviour has
recorded, the measurement system notifies the supervisor
node which begins to download the data from every smart
sensor connected to it. To give much more freedom end
flexibility to the sensors network, the smart sensors use the
Web services technology to export its services and
functionalities. In this paper, the main parts of the system
are explained in details and some experimental results are
reported.

Keywords: smart Web sensor, network sensors, Web
service, UDDI, symmetric asynchronous system

1. INTRODUCTION

Several applications require for a distributed
measurement system able to measure the same or different
parameters at different points in a wide area. In recent years,
wide varieties of solutions have been proposed for remote
measurement and data transmission. Distributed systems
based on smart web sensors represent the best solution to
many different measurement problems [3-6]. By adopting
these sensors, a client can receive the measure of a particular
physical quantity with a browser or an application,
developed to receive information from the web server.

From developer side, smart Web sensors present always
a closed approach to interact with them, so web services are
adopted in order to give a standard approach in developing a
Service Oriented Architecture. From network side, Internet
is a widely adopted network where any user is uniquely

identified with its IP address. So, to implement a distributed
measurement system, it is necessary to use a common and
open communication protocol to exchange information and
a methodology to auto-configure any smart sensor is linked
to the network. During the development of a smart Web
sensors network, two are the main problems to solve: i) how
“discover” the smart web sensor and ii) which interface is
“published” to consume the services. Our proposal is to use
the Universal Description Discovery and Integration
(UDDI) technology.

The original vision for UDDI was as standards and tools
that would help companies conduct business with each other
in an automated fashion. The searchable central registries
provide a publishing and subscribing mechanism to store the
agency and service descriptions and to point to detailed
technical specifications that define the interfaces to these
services. The UDDI registry is a possible solution of the
previously introduced measurement problems because it
provides a standardized method for publishing and
discovering information about web services and because it
implements a customization of type’s description that can be
used to standardize the smart Web sensor interface to the
network.

In the proposed distributed measurement system, the
sensing parts are smart Web sensors which provide a Web
service interface to share the acquired data. The smart Web
sensors store a technical model (tModel) document in a
UDDI registry in which all the information about the
exported service are present. The smart Web sensors
reference their sensors interface to other tModel to create a
categorization of sensors (taxonomy) and so build sensors
network linked with the same reference. At the end a
supervisor node has been developed to use the proposed
network by means of symmetric asynchronous
communication technique. The supervisor node sends
asynchronous packets to UDDI registry to find smart Web
sensor and sends asynchronous packets to smart Web to
consume the published services and to the client connect to
the network.

LINUX

SM
A

R
T

 U
D

D
I

SE
N

SO
R

APACHE

PHP

NuSOAP UDDI 2

SM
A

R
T

 U
D

D
I

SE
N

SO
R

APACHE

PHP

NuSOAP UDDI 2

JD
B

C

LINUX

TOMCAT

APACHE

jUDDI

JAVA

MySQL

DB

MySQL
SERVER

UDDI REGISTRY

tModel

WEB SERVICE

WSDL

WEB SERVICE

WSDL

pu
bl

is
h

consume store

W
E

B
 S

E
R

V
IC

E
U

D
D

I A
C

C
E

SS

APACHE

PHP

NuSOAP
Server

NuSOAP
Client UDDI

W
E

B
 S

E
R

V
IC

E
U

D
D

I A
C

C
E

SS

APACHE

PHP

NuSOAP
Server

NuSOAP
Client UDDI

SUPERVISOR
NODE

APACHE

PHP

NuSOAP ASYNC
WEB SERVICE

WSDL

WEB SERVICE

WSDL
UDDI 2

consum
e DB

MySQL
SERVER

DBDB

MySQL
SERVER

Fig. 1. Network and software architecture of the proposed distributed system

2. NETWORK ARCHITECTURE OF THE
PROPOSED DISTRIBUTED MEASUREMENT

SYSTEM

The central elements of the proposed network are the
UDDI registry, the Web service UDDI access, the smart
UDDI sensor and the Supervisor Node.

The UDDI registry is the load-bearing wall of the whole
network. It is composed by a personal computer in which a
UDDI registry has been implemented.

The smart UDDI sensor is a smart Web sensor which
publishes on Internet a Web service of application-
depending functionalities and stores in the UDDI registry its
functionalities.

The Web service UDDI access is a Web service with
three distinct functionalities: i) it allows at a client to access
to the network via SOAP messages, ii) it interfaces the client
to the UDDI registry to search a particular smart Web sensor
and iii) it interfaces the client to the smart UDDI sensor to
consume the Web service.

The Supervisor Node is composed by a personal
computer in which a Linux based platform has been used to
consume the Web services present in the sensors network. A
relational diagram of the proposed architecture is reported in
the Figure 1, while in the next subsections the main parts of
the network elements are explained in more details.

2.1. Taxonomies of Smart UDDI Sensors
In the proposed network, every smart UDDI sensor

(SUS) publishes its services both into the Internet network
and into the UDDI registry as reported in Figure 1. For the
Internet publishing part, the SUS presents a Web service
interface allowing every user to access to its functionality as
in [3, 7, 8]. For the UDDI registry publishing part, the smart
Web sensor stores in a UDDI record all the standard
information (such as company name, business identifier,
etc...) and technical information (such as tModel) to allow
every consumer to search and to find the specific SUS [9].

However, every SUS can provide a different list of
services and a different use of the same services caused by a
different interface that the smart Web sensor present to the
consumer. In the proposed system, a tModel describing the
sensor services has been developed as a basic common
interface from which every smart Web sensor realizes a
concrete implementation [10]. In this way, a taxonomy of
smart Web sensors can be developed to create a sensors
network [11] that presents the same interface to the client
even if they have a different implementation [12].

SWS1 SWS2 SWS3 SWS4

WS1 WS2 WS3 WS4

SENSORS NETWORK1 SENSORS NETWORK2

SENSORS NETWORKS
LEVEL

SENSORS NETWORK1
SUPERVISOR

SENSORS NETWORK2
SUPERVISOR

UDDI

SUPERVISIORS
LEVEL

SERVICES
LEVEL

Fig. 2. How supervisors use the sensors network

2.2 Web Service UDDI Access
UDDI adopts a standard protocol based on SOAP to

send and receive information [13]. The access to the UDDI
registry is defined by the APIs reported in [14]. To give
much more freedom to the clients that use the distributed
measurement system, a special Web service has been
developed to consume the network of SUSs, accessing to the
UDDI registry [15]. As reported in Figure 1, the Web
service UDDI access (in short SWUA) provides an interface
that links the client to the UDDI registry and to the network
of SUSs. For the UDDI interface it publishes only the
methods that allow the discovering of a SUS, while, for the
SUS interface, it publishes some generic method to consume
the Web service of SUS involved in the search. Ultimately,
the Web service UDDI access provides a complete access to
the network of SUSs with some simple tasks: i) the client
sends a query to the WSUA using a Web method; ii) the
query is forwarded by the WSUA to the UDDI registry
using the UDDI APIs; iii) the response of the query is
packaged in a software object with many information about
the SUSs involved in the search; iv) the client can access to
the Web service of SUS utilising an other WSUA’s Web
method; v) the WSUA sends a SOAP message to the SUS
and waits a response that sends back to the client.

2.3 Supervisor Node
The supervisor node structure is reported in Figure 1. It

is composed by Linux-based platform on a personal
computer over which APACHE e PHP are installed as
software services. Three are the main elements that
supervisor node uses to communicate with the other parts of
the network: i) NuSOAP class is the supervisor node
interface which provides all the Web methods to access to
the exported data and to access to the sensors network; ii)
UDDI2 class is used to communicate with the UDDI
registry and iii) the ASYnchronous interface is used to
communicate with all the smart Web sensors. By means of
symmetric asynchronous communication technique, the
supervisor node uses the sensors network as reported in
Figure 2: first of all, the supervisor node sends an
asynchronous packet to every smart Web sensors (the
sensing part of the network) that compose the sensors
network to communicate the start of activities. When a

specific event is detected, the involved smart Web sensor
sends an asynchronous packet to the supervisor node in
which is reported the time stamp and the typology of the
event. The supervisor node stores the information and
begins to download the data form every sensor present in its
sensors network. At the end, all the saved data are accessible
via the Web service interface.

3. THE DEVELOPED DISTRIBUTED
MEASUREMENT SYSTEM

3.1 The developed Web Service UDDI Access
A personal UDDI registry has been implemented to

develop the distributed measurement system. It has been
used jUDDI project ver.2.0 because it is an open source Java
implementation of the UDDI specification for Web services.

To implement the UDDI registry by jUDDI, on a local
personal computer with Fedora Core 4 has been installed: i)
Java 2 SDK - used Sun’s Java 2 SDK SE, version 1.4.2_04;
ii) J2EE build and runtime environment - used Sun Java 2
Enterprise Edition (J2EE) 1.3.1; iii) Web server and/or
servlet container - used Apache Tomcat, version 5.0.24; iv)
SOAP processing framework - used the version of Apache
Axis that ships with jUDDI; v) Data storage mechanism -
used the MySQL relational database, version 4.0.19; vi)
UDDI registry framework - the registry framework jUDDI

3.2 The developed smart UDDI sensor
The smart UDDI sensor is an embedded system able to

perform measurement tasks and to communicate over the
Internet network. It has been adopted only open source
software for the developing of the distributed measurement
system. As a multipurpose operating system, Linux is used
for a wide variety of purposes including networking,
software development, as well as an end-user platform.
Apache is an implementation of an HTTP server and it is the
most popular Web server in use today. MySQL is an
implementation of a database server that is known for its
speed and reliability. PHP is general-purpose scripting
language that is particularly suited to Internet-based system
development and is the most widely used Apache module.
The hardware architecture is based on a motherboard that is
made operative via a light Linux distribution (Damn Small
Linux). The distribution has been installed on a USB pen
driver, while the database is stored in another USB mass
storage drive to separate the kernel with the data. A diagram
block of the whole system is reported in the Figure 3, while
in the Figure 4 is reported a photo of the realized prototype.

The proposed smart Web sensor has been adopted for a
power quality monitoring application. The Linux embedded
board performs some tasks: i) it receives information from
the Fluke 45 via the RS-232 port; ii) the C program saves
the received data in a database mounted on a USB mass
storage device; iii) the Web server manages a PHP Web
service for the publishing on demand of the present services
through the network interfaces connected to the system; iv)
it communicates with the UDDI registry for the discovering
of the services; v) it communicates with the client part of the
WSUA.

Fig. 3. Hardware and software architecture of the smart Web
sensor

Fig. 4. The developed smart UDDI sensor

The power line is measured by a multimeter Fluke 45
which performs True-RMS voltage measurement with an
accuracy of 0.05% and a bandwidth of 1 MHz. The Fluke 45
is connected to the motherboard via a RS-232 interface. A
low level program, written in C, performs same tasks: i)
managing the acquisition timing, ii) quering the Fluke 45 to
perform a measure; iii) parsing the string which contains the
measure in a floating number; iv) saving the new data with
the time stamp in the daily table; v) performing the
evaluation of maximum, medium and minimum at every
new value so, when the pointer of current value has
performed a complete cycle in the daily table, the data can
be saved in the historic table.

3.3 The proposed UDDI interface
For the proposed smart Web sensor it has been

developed a UDDI interface to standardize the input format,
the output format and the methods [16]. Every format is
stored in a UDDI tModel. In particular, two Web methods
have been developed:

1. GetDailyRMS(start_time,stop_time): with this
method a client can perform a request to download
the daily data from the start time to the stop time

from the smart Web sensor . The output is an array of
items that presents the stored value and the time
when the event is occurred.

2. GetHistoricRMS(start_date,stop_date): with this
method a client can perform a request to download
the historic data from the start date to the stop date
from the smart Web sensor . The smart Web sensor
provides some processing before to store the data
into the local database. In particular, it has been
performed the Maximum, Medium and Minimum
processing. The output is an array of items in which
every item is a collection of three sub-items. Every
sub-item presents the Maximum, Medium or
Minimum value and the date and time when the event
is occurred.

3.4 The Supervisor node
As reported in Figure 2, the supervisor node covers an

important rule in the sensors network. It manages and
controls the smart Web sensors (SWS) and it interfaces the
functionalities exported by the sensors (WS) to the clients
connected to the network. So, every sensors network has
refereed to a particular supervisor to create a scalability of
the network management and to identify the sensors
network with its master (the supervisor). To give much more
dynamicity and flexibility to the sensors network the
supervisor node use two ways to communicate with the
clients and with the smart sensors: i) during a normal access,
it routes the client request directly to the sensor involved in
the communication; ii) if a sensor notices an abnormal
behaviour of system under test, it uses a symmetric
asynchronous technique to communicate the event to the
supervisor node [17]. In Figure 5 is reported the technique
adopted that is similar to the AJAX technology: the
supervisor node sends a not-blocking request to every smart
sensor connected to it and continues its activities until a
response is received. If an abnormal event has noticed, the
supervisor node requests the measured data before and after
the event from all the sensors connected to it for having a
global view of the phenomenon. The data are stored locally
in a database present on the supervisor node for an historical
archive. The clients connected to the supervisor node can
access to the archive using the Web service technology or, if
they are connected during an abnormal event recorded by
the supervisor node, the data are immediately sent.

Fig. 5 The symmetric asynchronous approach used by the
supervisor node

Fig. 6. A screenshot of Client GUI during a manual access

Fig. 7. A screenshot of Client GUI during an asynchronous event

4. THE EXPERIMENTAL RESULTS

The whole system has been tested to verify the proposed
architecture. Using the Web service UDDI access, a client
has been developed with Visual Studio 2005 .NET to
consume the proposed smart sensor. The client has been
written in VB .NET using the Framework .NET 2.0. The
Windows form allows the user to access to the smart Web
sensor directly or via the supervisor node to download the
data from the daily table and the historic table. Selecting the
period of time from the ActiveX control and push on the
Download Data, the Windows form access to the supervisor
node which download the data from the smart sensor. On the
right side of time-depend graphs, a static histogram of all
downloaded data has been developed to give much more
information to the user. The histogram divides the data in
eleven classes for the daily RMS values and in seven classes
for the historic RMS values. The frequencies of every class
are evaluated and then plotted on the user interface.

In the Figure 6, a typical RMS behaviour has been
presented during a manual download. The time to download
50 floating point data is 0.546598 s. The time measurement
test has been provided using the software Ethereal (network
analyzer software). In the Figure 7, a RMS step variation
has been reported during an asynchronous event. The

connection time is 0.230876 s while the download time is
0.426716 s. In this test only the RMS behaviour has been
downloaded, while the Historical data are unchanged.

5. CONCLUSIONS

In this paper a new architecture of an event-based
asynchronous sensors network has been presented. The
architecture adopts a hierarchical approach to control and to
manage the remote smart sensors by means of a supervisor
node. Every supervisor node identifies a particular sensors
network and uses a symmetric asynchronous communication
technique to consume the smart sensors services and to
exchange data with the client connected to the network. The
sensors network uses the tModel description to create a
common interface to publish the services and to create
taxonomies of accessible services. To test the proposed
network, a smart sensor using only open source and
freeware software for a PQ monitoring application has been
developed. The smart sensor is based on embedded Linux
distribution mounted on a USB pen drive while the
acquisition part uses a Fluke 45 multimeter connected with
the system via the RS-232 interface. To give much more
freedom to the whole system, a new Web service for UDDI
access has been developed to create an interface between the
client and the UDDI registry and between the client and the
smart Web sensor. In this way, the client can see a Web
service of Web services and can found the specific Web
service only with standard Web method without knowing
UDDI APIs. A user interface based on Framework .NET 2.0
has been developed to consume the network. The results
show the client can access to the remote DB present on the
smart Web sensor to download the measurement data.
Moreover, the supervisor node can communicate in
asynchronous way to the remote client and to the smart
sensor to reduce the waiting time and to avoid the polling
request/response. At the end, the measured connection and
download times show a good response of the proposed
approach.

REFERENCES

[1] C. Muscas, L. Peretto, S. Susil, R. Tinarelli “Implementation
of multi-point measurement techniques for PQ monitoring”,
in Proc of IEEE Instrumentation and Measurement
Technology Conference, Como, Italy, 18-20 May 2004.

[2] C.Muscas, L. Peretto, S. Sulis, R. Tinarelli “Effects of load
unbalance on multi-point measurement techniques for
assessing the responsibility for PQ degradation”, in Proc. of
IEEE 11th International Conference on Harmonics and
Quality of Power, 12-15 Sept. 2004.

[3] F. Ciancetta, B. D’Apice, D. Gallo, C. Landi, “Architecture
for Distributed Monitoring based on Smart Sensor and Web
Service”, in Proc. of IEEE Instrumentation and Measurement
Technology Conference, Sorrento, Italy, 24-27 April 2006.

[4] F. Ciancetta, E. Fiorucci, B. D'Apice, C. Landi, “A Peer-to-
Peer Distributed System for Multipoint Measurement
Techniques”, in Proc. of IEEE Instrumentation and
Measurement Technology Conference, Warsaw, Poland,
May 1-3, 2007.

[5] Kang Lee and Eugene Song, “Smart Transducer Web
Services Based on the Proposed IEEE 1451.0 Standard”, in

Proc. of IEEE Instrumentation and Measurement
Technology Conference, Warsaw, Poland, May 1-3, 2007.

[6] F. Ciancetta, B. D’Apice, C. Landi, A. Pelvio “Mobile
Sensor Network Architecture for Environmental
Monitoring”, in Proc. of IEEE IMEKO TC-19, Iasi,
Romania, September 19-21, 2007.

[7] Tomasz Mielcarz and Wieslaw Winiecki, “The Use of Web-
services for Development of Distributed Measurement
Systems”, in Proc. of IEEE Workshop on Intelligent Data
Acquisition and Advanced Computing Systems: Technology
and Applications, 5-7 September 2005 ,Sofia, Bulgaria, pp
320–324.

[8] F. Ciancetta, B. D’Apice, D. Gallo, C. Landi, “Plug-n-Play
Smart Sensor Based on Web Service”, IEEE Sensors
Journal, 7, issue 5, May 2007, pp 882–889.

[9] Jiamao Liu, Ning Gu, Yuwei Zong, Zhigang Ding, Shaohua
Zhang and Quan Zhang, “Service Registration and
Discovery in a Domain-Oriented UDDI Registry”, in Proc.
of the Fifth International Conference on Computer and
Information Technology (CIT’05), Shanghai, China, 21-23
September, 2005, pp 276–283.

[10] OASIS, UDDI Registry tModels, Version 2.04, Available at
http://uddi.org/taxonomies/ UDDI_Registry_tModels.htm

[11] S.M. Pahlevi, H. Kitagawa, “Taxonomy-based adaptive Web
search method”, in Proc. of International Conference on
Information Technology: Coding and Computing, Las
Vegas, NV, USA, 8-10 April, 2002, pp 320–325.

[12] OASIS, Providing a Taxonomy for Use in UDDI Version 2,
Available at http://www.oasis-open.org/committees/uddi-
spec/doc/tn/uddi-spec-tc-tn-taxonomy-provider-v100-
20010717.htm

[13] OASIS, UDDI Spec Technical Committee Draft, Dated
20041019, Available at http://www.oasis-
open.org/committees/uddi-spec/doc/spec /v3/uddiv3.0.2-
20041019.htm.

[14] OASIS, UDDI Version 2.04 API, Published Specification,
Dated 19 July 2002 Available at
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.pdf.

[15] Jian Jun Yu, Gang Zhou, “Dynamic Web Service Invocation
Based on UDDI”, in Proc. of IEEE International Conference
on E-Commerce Technology for Dynamic E-Business (CEC-
East’04), Beijing, China,13-15 September, 2004, pp 154–
157.

[16] Guan Chao, Li Xiujun, Meijer G.C.M., “A system-level
approach for the design of smart sensor interfaces”,
Proceedings of IEEE Sensors, 2004, Vienna, Austria, 24-27
October, 2004, pp 210–214.

[17] R. van Glabbeek, U. Goltz, J.-W. Schicke, “ Symmetric and

Asymmetric Asynchronous Interaction“. Proc. of 1st
Interaction and Concurrency Experience (ICE'08)
Synchronous and Asynchronous Interactions in Concurrent
Distributed Systems, Reykjavik, Iceland, 6th of July 2008.

	PagNum757: 757
	ISBN757: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum758: 758
	PagNum759: 759
	PagNum760: 760
	PagNum761: 761
	PagNum762: 762

