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Abstract − Assessment of power transformer condition 

is very important for utilities, to ensure continuous power 
transmission and power supply. Therefore, different 
techniques are used for condition assessment, as off-line 
diagnostics and on-line monitoring. The off-line diagnostics 
has some time period between consecutive diagnoses, and 
during that period the condition is unknown. Diagnostic 
tools in monitoring system usually comprise comparison of 
values of monitored quantities to preset limits, and alarming 
if these limits are exceeded. In this way weak diagnostic 
capabilities are achieved. 

Therefore, a new diagnosis model for assessment of 
condition of oil immersed power transformers was 
developed. This model is aimed to continuously and 
automatically diagnose transformer condition. The diagnosis 
principle is interpretation of dissolved gas analysis (DGA) 
data using several standardized interpretation methods. 
Then, on the basis of obtained diagnoses an overall 
diagnosis is inferred using VAC, VEV or VSC inference 
methods in a similar way as it is done by the human 
diagnostician. 

The diagnostic model shows excellent application 
flexibility, high robustness and significant diagnostic 
accuracy. 

Keywords: automatic diagnosis, power transformer, 
inference method 

1.  INTRODUCTION 

Equipment in infrastructure systems is always designed 
for certain lifetime. An example of such equipment is HV 
equipment in power system. Traditionally, this equipment is 
replaced after its projected lifetime has expired. As thirty-
forty years ago huge investments in power systems 
happened around the world, lifetime of this equipment has 
recently expired, or it will expire soon. 

Recent liberalisation of electric power market brings the 
competition in this, traditionally monopolistic market. 
Competition forces utilities to decrease costs of production, 
transmission and distribution of energy, as well as costs of 
equipment maintenance. It also increases demands on 
reliability of energy supply, and enforces utilities to carry 
out further technical and technological development of the 

power system to assure their competitiveness on the market 
in the future. 

Utilities face the challenge that huge investments are 
necessary for replacement of aged equipment, but at the 
same time significant part of the fleet is in good condition, 
and, under certain circumstances, it is available for further 
exploitation [1]. 

The most often used solution is keeping aged equipment 
in service with application of continuous condition 
monitoring, as long as the equipment is in good condition 
[2]. 

2.  APPROACHES TO TRANSFORMER CONDITION 
ASSESMENT 

Systems for continuous condition monitoring of 
generators, transformers, circuit breakers, power lines etc. 
are nowadays available on the market [3]. 

Transformer condition monitoring systems measure 
values of many quantities, process and archive collected 
data, but the diagnostic ability of such systems is quite poor, 
often consisting of comparison of actual values to alarm 
limits, and alarming when these limits are exceeded. 

As such functions are not efficient enough for condition 
assessment, newer and better diagnosis systems, based on 
artificial intelligence and multivariate statistics have been 
developed. The most often systems are based on different 
types of neural networks (NN), like MLP NN (Multi-Layer 
Perceptron NN), BP NN (Back-Propagation NN), GR NN  
(General Regression NN) etc [4], [5], then other techniques 
like fuzzy logic, expert systems, decision trees, support 
vector machine, evolutionary programming, evidential 
reasoning [6] and many other techniques. 

All of these techniques have its advantages and 
disadvantages. Hence several techniques are used to 
constitute a hybrid diagnosis system [7]. These systems are 
verified measuring their classification accuracy. The highest 
accuracy is usually achieved using NNs. There is a reason 
for concern about general application of such systems. In 
fact, most of these systems are trained and tested using few 
tens, or few hundred samples, because it is very difficult to 
find enough, or better to say many samples of transformer 
faults. It is especially difficult to find enough samples of 
each type of fault for all types of transformers. As for 
training of NN much more examples are necessary, NN 



classification capabilities for wide spectra of transformer 
types are questionable. The necessity for application of 
diagnosis system for wide spectra of transformer types, 
better training features of system, and necessity of on-line 
diagnostic applications where reasons for investigation of 
other approach to transformer diagnosis. 

3.  TRANSFORMER INSULATION SYSTEM 

As this research is related to transformer insulation 
system, the most important stresses, degradation of this 
system, and degradation products are shortly described. 

Insulation system is a key component of any electric 
device. Most insulation systems in power transformers 
consist of mineral transformer oil and cellulose insulation 
such as paper, pressboard and transformerboard [8]. These 
materials are organic materials and they are subject to 
degradation. Therefore, insulation system is the most 
vulnerable component of transformer. 

Cellulose insulation in transformer enables dielectric 
strength and dielectric distance in windings, and distances of 
windings from components with different potential. Mineral 
oil enables cooling of transformer, but also it enables 
dielectric strength. 

Insulation system is exposed to thermal, electric, 
mechanic stresses and stresses due to environmental 
influences. Effect of any stress is ageing of insulation. 

During normal transformer operation and especially 
during degradation of insulation system gases are generated. 
Some of these gases are: 

� hydrocarbons and hydrogen: methane (CH4), ethane 
(C2H6), ethylene (C2H4), acetylene (C2H2) and 
hydrogen(H2) 

� carbon oxides: carbon monoxide (CO) and carbon 
dioxide (CO2) 

� non fault gases: oxygen (O2) i nitrogen (N2) 
Main faults that cause generation of gases are: 
� partial discharges (PD) 
� thermal degradation (T) 
� arcing (D) 

Generated gases are dissolved in transformer oil. 
Distribution of gases can be related to the fault type, and 
trend of gas generation can indicate severity of the fault. 

4.  DGA BASED TRANSFORMER DIAGNOSIS 

The DGA method is often used in practice. Good results 
in power transformer condition assessment can be achieved 
using this method [8]. 

It consists of taking the oil sample from the transformer 
according to standardized and well defined procedure. The 
oil sample is analyzed, and dissolved gases are identified 
and quantified, also through known procedures. After gases 
are quantified, results are interpreted. There are numerous 
interpretation schemes or methods for the interpretation of 
DGA results. The IEC methods are: 

� IEC 60599-1999 (IEC99) [9], 
� IEC 599-1978 (IEC78) [10], 
� Duval triangle method (MDT). 

The IEEE methods are [11], [12]: 

� Doernenburg method (DB), 
� Original Rogers ratio method (RG3), 
� Refined Rogers ratio method (RG4), 
� Key gas method (KG). 

There are also other interpretation methods, like logarithmic 
nomograph (LN) etc. 

The main problem in using these methods is that 
different methods applied to the same sample result in 
different, and often in contrary diagnostic decisions. DGA 
results of 8 samples are presented in table 1 (column 
“Diagnosis”) along with interpretation results of these 
samples using eight interpretation methods. 

Table 1.  Examples of interpretation of DGA results using different 
interpretation methods. 

No. Diag
nosis 

IEC
78 

IEC
99 

MD
T 

RG3 RG4 KG LN DB 

1 NF D1 ND DT D2 ND ND ND NF 
2 PD PD T1 T1 PD PD PD DT NF 
3 T1 T1 ND T2 T1 T3 ND DT NF 
4 T2 T1 T1 T3 ND T1 ND T T 
5 T3 T2 T2 T3 T2 ND ND T T 
6 DT ND ND D2 ND ND T3 D2 ND 
7 D1 D1 D1 D1 ND D1 ND D2 NF 
8 D2 ND ND T2 ND ND PD ND NF 

 
The meaning of diagnosis from table 1 is explained in 

table 2.  

Table 2.  Meaning of diagnosis abbreviations. 

No. Diagnosis Meaning 
1 NF Normal condition 
2 PD Partial discharges 
3 T1 Thermal fault, t<300 °C 
4 T2 Thermal fault, 300 °C� t<700 °C 
5 T3 Thermal fault, t�700 °C 
6 DT Mixed thermal and discharge fault 
7 D1 Discharges of low energy 
8 D2 Discharges of high energy 
 
The only way to combat the problem of different 

decisions for the same sample is usage of diagnostician’s 
knowledge and experience. Human verification of 
interpretation results is completely individual process, so it 
couldn’t be unified, or defined in procedure form. Because 
of all, the interpretation of the DGA results is described in 
literature as “art, but not science”. Nevertheless, combining 
interpretation method results and human knowledge and 
experience, brings good results in transformer condition 
assessment. 



5.  AUTOMATIC DIAGNOSIS SYSTEM 

On the bases of shown samples in table 1, it is obvious 
that automatic diagnosis of transformer condition, based on 
DGA results and interpretation schemes is very complex 
problem. It is multidisciplinary problem, the dependence of 
the fault and appurtenant gas concentrations is markedly 
nonlinear, and finally, the human interpretation skills must 
be simulated. 

In spite of this, the problem of automatic diagnosis is 
solved developing an inference model. This model makes 
decision using newly developed inference methods. These 
methods use specifically defined parameters, resulted from 
multivariate analysis of classification results of 
interpretation methods. 

All interpretation methods, except KG and LN, are 
implemented in standard form. KG is implemented using 
fuzzy logic, and LN is implemented using the same 
inference model used at the level of automatic diagnosis 
system (ADS). The inference model settings and number of 
inputs (votes) are different at LN level than that at the level 
of ADS. 

A flowchart of the automatic diagnosis procedure is 
shown in Fig. 1. 

 

Fig. 1.  Flowchart of automatic diagnosis procedure. 

In ADS at first concentrations of hydrogen (H2), methane 
(CH4), acetylene (C2H2), ethylene (C2H4) and ethane (C2H6) 
are measured using on-line DGA system. Then ratios of gas 
concentrations R1 to R7, used in interpretation methods, are 

quantified and distributed to appropriate methods. Each 
method assesses diagnosis on the basis of these ratios. All 
assessed diagnoses are then forwarded to inference model, 
witch inferences the overall diagnosis on the basis of 
mathematical model.  

The same principle of diagnostics is implemented at the 
level of LN interpretation method. 

6.  MATHEMATICAL MODEL OF AUTOMATIC 
INFERENCE 

6.1. Coordination of diagnosis 
Automatic inference is performed on the basis of 

diagnostic results of interpretation methods. As 
interpretation methods assess diagnoses in different ways, 
their diagnoses are coordinated according to table 3, to be 
able to use them in the same voting process, and to be able 
to assess the overall diagnosis. Diagnoses are not completely 
coordinated, and this level of coordination is the third level 
of diagnosis. 

Table 3.  Coordination of diagnoses (third level). 

Diag-
nosis 

IEC78 IEC99 MDT RG3 RG4 DB KG LN ADS 

NF NF NF NF NF NF NF NF NF NF 

PD PD PD PD PD PD PD PD PD PD 

T1 T1 T1 T1 T1 T1 - 

T2 T2 T2 T2 T2 - - 

T3 T3 T3 T3 T3 T3 

T 

T3 

T 

DT - - DT - - - - DT 

T 

D1 D1 D1 D1 - D1 - - 

D2 D2 D2 D2 D2 D2 D2 
D 

D2 
D 

 
As methods have different format of output diagnoses at 

the third level, two additional steps of coordination are 
applied. This resulted in completely coordinated diagnose 
(first level of diagnosis), which are presented in table 4. 
Levels of diagnosis serve as resolution tuner of this 
diagnosis model. 

Table 4.  Coordination of diagnoses (first level). 

Diag-
nosis 

IEC78 IEC99 MDT RG3 RG4 DB KG LN ADS 

NF NF NF NF NF NF NF NF NF NF 

PD PD PD PD PD PD PD PD PD PD 

T T T T T T T T T T 

D D D D D D D D D D 

 
Interpretation methods are considered as voters, and their 

diagnoses are considered as candidates for inference 
diagnosis. 



In this research few methods are developed [13]. VAC 
and VSC inference methods are described and compared 
here. 

6.2. VAC inference method 
VAC inference method, or method of Valuation of All 

Candidates, assigns matrix of weighting factors Pj to each 
voter. Weighting factors are estimated during training, and 
they are used later during voting and inference. 
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where pij is weighting factor, and nc is the number of 
candidates. 

Voting result of the jth voter is voting vector GPj: 
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where gPij is the value of jth voter support for ith candidate. 
gPij = 0 if jth voter doesn’t vote for ith candidate, 
gPij = 1 if jth voter does vote for ith candidate. 

Pondered voting vector of jth voter Fj is defined as: 

 ( )( )( ) jjjjj GPGGF P

TT
P

T
P ⋅⋅⋅=  (3) 

Counting of votes and assessment of support to individual 
candidates is defined according to (4): 
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where PD is the vector of support to individual 
candidates, and: 
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where pi is a magnitude of total support of all voters to ith 
candidate. 

Candidate with highest support pi is announced as 
inferred diagnosis (ID) according to (6): 

 { }( )
c

,,,,,max)ID( 10 ni ppppF ��= . (6) 

6.3. VSC inference method 
VSC inference method, or method with Valuation of 

Supported Candidates, assigns a single matrix of weighting 
factors T to the committee of voters. Weighting factors are 
calculated at training, and they are used later at voting and 
inference procedures. 
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where T is a matrix of weighting factors, tij is a weighting 
factor for voting of jth voter for ith candidate, nc is the 
number of candidates, and nv is the number of voters. 

Vector of supported candidates GVT is defined according 
to (8): 
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where gVTi is a magnitude of voters support to the ith 
candidate. 
gVTi = 0 if none voter votes for ith candidate, 
gVTi = 1 if either of voters does vote for ith candidate. 

Matrix T’ is calculated according to (9): 

)(' T TfT = . (9) 
Pondered voting vector F is defined according to (10): 

 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

dm

1

0

n

i

f

f

f

f

F

�

�
, (10) 

where fi is a weighting factor for voting of ith voter, and it 
is defined according to (11): 
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Voting matrix GT is defined according to (12): 
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where GT is voting matrix, and gTij is a value ith voter vote 
for jth candidate. 
gTij = 0 if ith voter doesn’t vote for jth candidate, 
gTij = 1 if ith voter does vote for jth candidate. 

Counting of votes and assessment of support to individual 
candidates is defined according to (13): 

 ( )TT
T

D GFP ⋅= , (13) 

where PD is the vector of support to individual 
candidates, and pi is a factor of total support of all voters to 
ith candidate. 

Candidate with highest support pi is announced as 
inferred diagnosis (ID) according to (6). 

7.  EXPERIMENTAL RESULTS 

7.1. Set of samples for training and testing of inference 
methods 

VAC and VSC inference methods were tested on the set 
of 100 samples of transformer faults using stratified k-fold 
cross validation, where k=3. Distribution of samples with 
considered diagnoses by training/testing sets is presented in 
table 5. 

Table 5.  Distribution of samples with considered diagnoses by 
training/testing sets. 

Diagnosis Set 1 Set 2 Set 3 Total 

NF 3 4 4 11 

PD 4 4 4 12 

T 17 18 17 52 

D 9 8 8 25 

Total 33 34 33 100 

 

7.2. Measured parameters 
Inference model must be trained to be able to give 

inference diagnosis. After training, model should be tested. 
During these procedures some parameters are measured. 
These parameters allow evaluation of classification 
properties of the model. These parameters are: 

capsk - total classification accuracy of method in k 
subsets, 

cassck - total classification accuracy in set of classified 
samples of k subsets, 

cm - central approximate accuracy in k subsets, 
which takes into account both above mentioned 
accuracies, 

epsk - classification inaccuracy in k subsets, 
essck - classification inaccuracy measured in set of 

classified samples of k subsets, 
cres - percentage of resolved samples in k subsets. 

7.3. Measuring results 
Measuring results for parameters capsk, cassck and cres 

measured at model testing are shown in Fig. 2. It is obvious 
that methods VAC and VSC have significantly higher 
percentage of resolved samples, compared to all 
interpretation methods, except Duval triangle method. 
Classification accuracy capsk of VSC inference method is 
better than accuracies of interpretation methods, while 
accuracy of VAC method is lower then accuracies of the 
best interpretation methods. 

It is important to note that LN method, witch uses the 
same inference model, has also high accuracy, but its 
percentage of resolved samples compared to ADS is lower, 
because it uses different precondition for performing 
interpretation. 

Classification accuracies cassck of VSC is equal to it’s 
capsk, while cassck of VAC method is a little bit higher than 
it’s capsk. N method has the highest value of cassck. 
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Fig. 2.  Comparison of testing classification accuracies and 
percentage of resolved samples per methods. 

Comparing VAC and VSC inference methods, it is 
obvious that VSC method has better classification 
properties. Therefore, VAC method will not be used for 
transformer diagnosis. 

Other interpretation methods have significantly lower 
classification accuracy and percentage of resolved samples 
compared to VSC method. 

It is useful to compare classification parameters of 
method during training and testing. In this way it is possible 
to evaluate classification properties of method and 



confidentially judge its behaviour during operation in 
reality. 

VSC inference method has the same percentage of 
resolved samples at testing and at training (100 %). 
Classification accuracy capsk negligibly decreases (from 
79,5_% at training falls to 78 % at testing), and 
consequently inaccuracy epsk negligibly rises (from  20,5 % 
at training rises to 22 % at testing), Fig. 3. 

Therefore, LN and VSC methods have the best 
classification properties compared to all other methods, Fig. 
2,  
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Fig. 3.  Comparison of training and testing classification 
parameters of VSC method. 

8.  CONCLUSIONS 

The automatic diagnosis system is realized implementing 
known interpretation methods and newly developed 
inference methods.  

The system shows significant classification abilities, with 
accuracy capsk=78 %, and with approximate accuracy 
cm=80,6_%. If samples with small concentrations of gasses 
are excluded from analysis according to [9], classification 
accuracy ca’psk is 86,8%. This is very good result for on-line 
diagnostics, whereas if some samples couldn’t be resolved 
because of small amount of gas concentrations, after some 
time, when concentrations increase enough, the system can 
diagnose the fault before it evolves in failure. 

Comparison with interpretation methods shows 
advantages of new inference method VSC. Besides of better 
accuracy of this method, it has other interesting and useful 
features like variable resolution of diagnosis (level of 
diagnosis). 

The developed model is general and it is applied at 
different levels in the ADS (at the level of interpretation 

methods - LN method, and at the level of diagnostic system 
- ADS). Even more, the model is completely general that it 
can be used to make decision in any kind of election, when 
voters vote through defined procedure, and when data for 
training and testing are available. 
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