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Abstract — Calibration of instruments like modern
programmable instruments is generally made in specific
points within each range, even if the desired result is the
general calibration of the instruments. This paper is
considering the problem of how many points are needed for
a correct calibration of a range, and, by means of a statistical
approach, the method propose evaluates a confidence
interval where the difference between the measured and the
calibrated can be confined with an assigned probability.
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1. INTRODUCTION

Systems for calibration and verification of instruments
have been built. Generally, even in case of measurements by
means of automatic system [1] — [4] the number of
measurements performed is limited and, in each range, only
a few points are taken. In fact, the use of an automatic
systems is an advantage for the calibration and the
verification of instruments, but, even if in this case, time is
necessary for both the calibration of the instruments under
test and the instruments of the calibration system. So, each
measurement point introduced in the procedure increases the
measurement time and consequently the total cost of the
calibration. For this reason it is important to reach a
compromise between the reliability of the measurement
procedure and its cost.

For the characterisation of an instrument it is useful to
think, for every quantity and range of the instrument under
investigation a function that characterise the output value. In
a voltmeter, for example, this function can be given as a
table or a graphics where, for each calibrated voltage at the
input of the instrument, the value of the voltage read by the
instrument is supplied.

An alternative representation is a function d(x) of the
difference between the value measured or generated by the
instruments and the calibrated one. This difference can be a
function of the value of the quantity and of other quantities
of influence, like the frequency.

Using a function like this, even if in an implicit way,
manufacturers generally assign the specifications of an
instrument by attributing an interval around the expected
value. The specification can be given, for example, as a fix
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term added to another proportional to the absolute value of
the quantity under test.

The expression of the uncertainties in specific points of
the range does not imply particular conceptual difficulties,
because the theoretical framework derives mainly from the
method for the expression of the uncertainty for single
measurement [5]. Instead, the characterisation of the whole
selected ranges requires a different approach.

A disadvantage of specifications given as a interval of
values, in the traditional sense, is due to the fact that, for
each measurement, the result can be only within or outside
this interval. So, the hypothesis of compliance to a given
specification can be rejected by a single measurement when
it is out of the interval, but instead, when more results are
within the interval, one cannot assume that the instrument
complies the same specification.

The probabilistic approach appears to be the only
acceptable compromise that also reduces the number of
measurement points and then the cost of the process.

A possible trade-off between the number of the
measurements, and consequently the cost of the
measurements, and the compliance to the specifications is
then given with a probabilistic model, where the probability
of being within a specified limit is given as a result of a set
of measurements.

2. THEORY OF THE PROPOSED METHOD

2.1. Relation between the samples

In the method considered here the evaluation is made in
a given range of values, (for example in the range —10 V
+10V dc of a voltmeter) In this range the possible
difference function d(x) is assumed to exist but not to be
known. The problem will be to identify an interval where
this function is confined, when only a finite number of
samples dj of this function can be measured each as a

function to the quantity x and of other quantities (for
example the frequency in an ac voltmeter).

So, for assumption, the function of one or more
variables.

d; =d(x) @

dix =d (X, Y,) 2
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In the simpler case given by expression (1), (the
extension to the multiple independent variables can be made
accordingly) the additional hypothesis presupposes that the
Xj are chosen as a possible output of random variables with a

probability density function respectively of W(x) within the
range. With this assumption, the results obtained by
applying the functions d(x) can also be seen as a random
variable 8. The probability density function W(o) could be
derived for W(x) if both this probability density function and
the function d(x) were known. If we have not other
information a good choice for W(x) seems to be the uniform
distribution within the independent variable x.

In order to give a first solution to the problem we can
assume that the measurement of each single sample of the
function d(x) is only affected by a negligible uncertainty.

2.2. ldentification of a tendency of the difference
function

A first step to gain same understanding on the function
difference from the data obtained by the measurements it is
the identification of a possible tendency of the difference
function d(x) in the range. For this purpose, the
manufacturer can already have supplied possible models.

For example is some case of electrical instrument the
offset-gain model is employed to give the specification and
that means that the implicit model is a linear one and it can
be represented by a function of the independent variable of
the range by function like:

J(x):a+b-x

- (©)
d(x)=a+b-|x|
If the manufacturer has not supplied a model for the
correction function, it can be identified by using the
common functions. In a group of possible functions, the best
one can be chosen considering the value of the correlation
factor between the samples and the functions of the set. A
statistical test can reject the hypothesis of not correlation to
a degree of probability (1-P), with the probability P
appropriately selected (for example P=90% or P=95%)
When the structure of the function for correcting the
characteristic has been selected, the parameters are
computed by means of the best fit by means of the samples
taken in the measurement process. The correction lead that
to a new difference function:

d”(x) =d(x) -c(x) (4)

where c(x) is the function selected by the method considered
before.

2.3. Variance estimation

By the sample acquired, once the correction has been
performed it is possible to estimate the variance. An
estimator sufficiently robust of the wvariance of the
distribution of d* for a small number of samples can be
obtained by computing the value that with a probability P is

greater than the variance. This is obtained by dividing the
experimental value of »* by its value computed for the given
probability P and degrees of freedom v.

N N

O’ = 1} P Z[dr —;Zd.*} ®)

2 - y) i i=1
x°( 5 )

where the degree of freedom v is linked to the number of
samples in the range (N) by:

v=N-1 (6)

The evaluated variance given in (5) is formally valid
only for a Gaussian probability density function, The
extension for other distributions can be assumed with some
limitations if it can be identified as not greatly different. As
a support for this assumption the probability density
function of the random variable d* can be tested to evaluate
if its identification can be achieved. A possible analysis can
be performed by means of a histogram method with the

application of the #? test. However, to be consistent with the
probability assigned, this requires generally a large number
of samples, which can be inconsistent with the measurement
requirements. For few samples some evidence, especially to
reject the hypothesis of a normal or rectangular probability
density function, can be obtained for example by tests on the
skewness and kurtosis of the distribution.

2.4. Estimation of the confidence interval

The confidence interval where the values of the difference
function in the range where they have not been measured
can be evaluated by the previous consideration.

There are two possible ways:

e |If the probability density function is identified for
example as the normal distribution) the proper coverage
factor can be used.

e If instead, there is not sufficient information about the
probability density function, the Chebyshev inequality,
which is more conservative, but it is valid for every
probability density function, can be used to evaluate the
limit [6].

Chebyshev inequality states the probability of finding the

value outside the limit to as:

P{ \X—E(X)\Zt-o—}sti2 @

3. APPLICATION OF THE METHOD

3.1. Operations for evaluating the limit.

Based on the previous theory the evaluation of the
interval limits from a given set of measurements and with a
given probability can be programmed in an automatic
procedure. In fact, by assuming that the input value have
been randomly selected, the operations performed to find the
interval limits are:
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o Evaluation of the differences between the measured and
calibrated values.

e Detection of a possible correction function c(x) between
the pools of functions considered (at the moment only
the linear functions) and evaluation of its parameters by
means of least square adjustment.

e Computing the values of d';.

e Estimation of the maximum standard deviation for a
given probability by means of relation (5).

e  Estimation of the limits by relation (7).

3.2. Model for the simulation of the application of the
automatic procedure

A program for the evaluation of the confidence interval
where the values are contained with a given probability has
been built for simulation purpose.

This program goes through the following operations:

e Requires the definition of the characteristic function
d(x). The characteristic functions in the ranges can
be given both by means of functions of the input
value or by means of tables. In the latter case the
analytical function is evaluated by means of an
interpolation between the points given in the table.

e Randomly selects a number N of samples of x.

e Computes the corresponding values of d';.

e Compute the estimated variance and the limits for
predefined values of the probability P.

o Verify the rate of x axis where the difference is
outside the evaluated limits.

In this way it is possible to explore different type of

functions and also simulate to the effect of the introduction
of the uncertainty of the measurements.

4. PRELIMINARY RESULTS

The analysis has been performed with different
characteristic functions given by means of analytical
expressions. The intervals have been evaluated for different
probability (the values investigated were mostly 90% and
95%).

As an example, the determination of the error and of the
uncertainty in a voltmeter of range 1V is given. The
unknown function is supposed to be described by a linear
function superimposed to a sinusoidal one, as in the
equation:

d(x)=a-x+b+c-sin(2z-Xx) (8)

with a=0.01 %, b= 0.02 % and ¢=0.002 %.

The uncertainty in each measurement performed by the
calibrator is assumed to be at the level of 0.005% (k=2).

The manufacturer of the instruments suggests a linear
model by specifying a gain error and an offset error.

Fig. 1 and Fig. 2 gives the results using the theory
reported respectively for 5samples and for 15 samples in
the range.
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Fig.1 Determination of the 95 % error band with 5 points measured
in the range. The curve is assumed to be the real characteristic of
the instrument and the points the measurement performed. The
identification of the error in the gain and in the offset (straight line
in the centre) is respectively Aa=3.9 106, and Ab=9.1 10°.
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Fig.2 Determination of the 95% error band with a total of 15
point measured in the range. The identification of the error in the
gain and in the offset is respectively Aa=-0.7 105, and Ab=4.3 10°®.

In this example the good result with only 5 samples is
also due to the model supplied to the manufacturer that
could not have been validated otherwise by the limited
number of samples.

A synthesis of the results for a generalisation is not easy.
The exact results, of course, depend on the specific
functions selected, but, in the examples examined up to now
the limit of the intervals computed always contained the
assumed part of the characteristic. Due to the effect of the
Chebyshev inequality the evaluation is sufficiently
conservative to overcome the fact that the probability
density function is not necessarily Gaussian.

An evaluation of the trade-off for the number of samples
can be obtained in the same way by examining
experimentally different distributions as in the example
given for a different number of samples. However, in order
to have a hint of the effect of the number of samples on the
evaluation one can assume, for example, that the standard
deviation computed by the samples is always the same.
Then, the result normalised to this standard deviation is
given by combining relations (5) and (7). So, the amplitude
of the confidence interval containing with probability P is
given as a function of the number of samples N as:
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The function ClI is given in Fig. 3 as a function of the
number of sample from N=4 to N=50.

This function show that the reduction of the limits is
very effective for a low number of samples, but the
improvement is lower when the number of samples is higher
than 10.
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Fig.3 Relative evaluation of the limits for 95% (X) and 90% (+)
probability as function of the number of samples.

5. CONCLUSIONS

A method based on statistical approach for the
verification in the whole range has been developed.

From a set of measurements in a given range, this
method evaluates the confidence interval for the function of
the difference between the measured and the calibrated
values. The method operates on the basis of systematic tests

on the samples, their probability density function and the
correlation with a limited number of functions.

The preliminary results obtained by a program operating
on many selected analytical functions show that the method
estimates the confidence limit of the difference function.
The results are generally quite conservative if the probability
density function of the results cannot be identified.

A compromise between the accuracy and the number of
samples to be employed can be evaluated by the method and
is shown in the preliminary results.
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