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Abstract − In this paper, the problem of designing 

simple sampling plans by attributes for isolated lots is 

considered.  The customary design procedure is based on 

numerical tables like those reported in the ISO 2859 norm, 

or on iterative algorithms implemented in a computer 

software, not suitable for inclusion in a norm. The paper 

proposes a procedure based on quite simple closed-form 

equations, yielding the required sample size and the 

acceptance number for any consistent set of specifications 

on the operating characteristic, in terms of AQL, RQL, PR, 

CR. The equations are derived using a Gaussian 

approximation of the hypergeometric distribution. It is 

shown that the proposed design procedure, besides being 

very simple, is accurate (i.e. the specification are accurately 

met) and universal (i.e. the method is valid for a wide range 

of specifications). 

Keywords: sampling plans, statistical quality control, 

ISO 2859. 

1. INTRODUCTION 

A well-known and widely used tool for quality 

management in industry is statistical sampling of lots of 

items (produced or acquired). Particularly popular is quality 

control by attributes, which, with respect to control by 

variables, involves a smaller cost per item, and is less prone 

to mistakes and inaccuracies by the personnel in charge for 

the inspection. Besides, although double, multiple and 

sequential sampling plans are possible and often 

advantageous under some respects, the single-sample 

sampling plan is still the most common, due to its easy and 

clear implementation and management, leaving aside other 

advantages (for example, it makes possible a straightforward 

and uniform collection of statistical data about the quality of 

the items and the production process). 

One fundamental reference about sampling plans by 

attributes is of course the ISO 2859 norm, revised quite 

recently [1]. The norm provides an extensive set of tables 

and procedures to design sampling plans suitable for a wide 

variety of situations (lot-by-lot, isolated lot, skip-lot 

sampling, etc.). The norm, on the other hand, is not suitable 

to carry out an optimal design of sampling plans, nor it 

allows flexibility in the design (the user, for example, has no 

freedom in choosing producer’s and consumer’s risks, and 

has other important constraints). 

The user interested in an optimally designed sampling 

plan with customized characteristics must give up the tables 

in ISO 2859, and revert to using one of the many software 

packages available to this purpose (e.g. [2], [3]); or, if it is 

considered more satisfactory, one can choose a suitable 

algorithm in the literature (e.g. [4]) and implement it in the 

preferred software environment (C, Matlab, Microsoft Excel 

+ Visual Basic, etc.). Using a computer is almost mandatory 

since the design technique is typically an iterative search. 

The design procedures in ISO 2859, however, although 

rigid and sub-optimal, are still very widely used, because of 

their simplicity (a software package is not needed) and 

because one can easily understand and illustrate them to a 

third party, e.g. a quality inspector. Having design 

procedures with the simplicity and immediacy of the ISO 

2859 tables, and also the flexibility and optimality achieved 

by a computer program is of course desirable. 

In this paper it is shown that, for the case of single 

sampling plans by attributes, such procedures actually 

exists. One can design a nearly optimal sampling plan, 

without the tables in ISO 2859, using only a non-

programmable pocket calculator and a table of the standard 

normal distribution (also available in some pocket 

calculators). In other words, the paper presents nearly exact 

closed-form design formulae, working for a very wide set of 

specifications. 

For the sake of clarity and conciseness, the paper 

illustrate the design equations for the particular case of 

isolated lot sampling plans [5], which is ruled by the less 

treatable mathematic law, the hypergeometric distribution. 

Similar equations can be derived, with an analogous 

approach, for a number of cases covered by ISO 2859, and 

in particular those ruled by the binomial and Poisson 

distribution (lot-by-lot sampling in a continuous production 

[6]). 

2. THE DESIGN PROBLEM 

Consider lots of size N  submitted to statistical 

inspection for acceptance. A single sampling plan consists in 

inspecting n  randomly selected items from each lot, with 

the decision rule: 

 
lot accepted

lot rejected

X c

X c

≤ ⇒
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where X  is the number of nonconforming items 

(“defectives”) found among the n  inspected items, and c is 

an integer threshold (acceptance number AN). The operating 

characteristic (OC) curve of the sampling plan is the 

probability of accepting a lot, expressed as a function of the 

actual number of defectives ( K ) in the lot. Its exact 

expression is: 
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where ( )
X

F x  denotes the cumulative distribution function 

(cdf) of the random variable (RV) X , and ( )
X

p k  denotes 

the probability mass function (pmf) of the same RV. Since 

X  is hypergeometric, the pmf has the well-known and 

rather cumbersome expression: 
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Consequently, the cdf (2) is not representable in terms of 

elementary functions. However, for given values of N , n , 

c , K  the OC (2) is readily evaluated, and a plot of the kind 

depicted in Fig. 1 is obtained. Basically, the sampling plan 

acts like a low-pass electrical filter with respect to the 

variable “number of defectives in the lot” (instead of the 

variable “number of cycles per second in the signal”). 
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Fig. 1.  Example of OC for a single-sample sampling plan of 

isolated lots. The Producer’s Point (PP) and the Consumer’s Point 

(CP) are highlighted. 

Although one can choose n and c according to various 

different criterions, the most natural principle – sometimes 

called “two-point design” – is to comply with a 

specifications mask similar to that used in electrical filter 

design. The mask is determined by the Producer’s Point 

(PP) and the Consumer’s Point (CP), with  abscisses called 

Acceptable Quality Limit (AQL) and Rejectable Quality 

Level (RQL) (also called Lot Tolerance Percent Defective 

LTPD, or Limiting Quality LQ in [5]). If the AQL is 
0

K  

and the RQL is 
1

K , meeting the design mask means to meet 

simultaneously the conditions: 
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where 
0

α  is the probability of rejecting an AQL lot (the 

Producer’s risk or PR), and 
1

β  is the probability of 

accepting a RQL lot (the Consumer’s risk or CR). 

Since ( )Kβ  is nonlinear in n  and c , and is not even 

elementarily expressible, the solution is customarily found 

by means of numerical iterative methods.  

If a design “by hand” (without the aid of a computer 

software) is desired,  it is considered necessary to use 

specific pre-calculated tables, which is the kind of method 

described in all the regulatory documents on statistical 

quality control, ranging from the old MIL-STD105 to the 

ISO 2859 norm. A flexible two-point design, however, 

would lead to tables of unfeasible dimensions, and therefore 

some heavy constraints must be imposed on the design. In 

the part of ISO 2859 dedicated to isolated lots [5], the main 

design procedure (method A) allows the user to choose only 

RQL (among a set of 10 values), and leads to plans with CR 

within 10% and 13%, and with an arbitrarily prefixed PP 

(which cannot be chosen by the user; the PR is guaranteed to 

be within 5% and 0%). Of course, this is a one-point design 

– based  on the CP only – with constrained choice of the CP. 

The alternative design procedure in [5] (method B) requires 

the user to choose an “inspection level”, which grossly 

means to choose n ; this is also, basically, a one-point 

design with constraints. 

Allowing much flexibility and precision in the “hand-

made” design requires a mathematical study of equations 

(4). In the next section, it is shown that, by introducing 

proper approximation, it is derived a fully flexible two-point 

design, suitable for inclusion in a concise written document 

– much more concise than the tables in ISO 2859 – and with 

performances comparable to those of computer software 

design algorithms. 

3. THE PROPOSED SOLUTION OF THE DESIGN 

PROBLEM 

Gaussian approximation of complicated distributions is a 

well-known tool in statistics. Approximating the 

hypergeometric distribution with the Gaussian one is not a 

new proposal (see, e.g. [7]); however, in a recent paper [8], 

the possibility of approximating the hypergeometric law 

with a normal one has been studied with particular care, 

including the case of very little sampling fraction /n N . 

This provides theoretical basis to a solution of (4) using the 

normal approximation. 

The hypergeometric RV with pmf (3) has mean npµ =  



and variance 2 ( ) / ( 1)npq N n Nσ = − − , being /p K N=  

the fraction of defectives, and 1q p= −  the fraction of non-

defectives. Therefore, under proper conditions (thoroughly 

discussed in [8]) it can be approximated by a normal RV 
2( , )Y N µ σ∼ . 

In writing down an approximate expression of the OC it 

must be taken in due account that it involves the cdf, not the 

pmf. Since a discrete distribution is here approximated by a 

continuous one, the continuity correction is dutiful. The 

approximated expression of the OC ( )Kβ  is, therefore 
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where ( )Φ ⋅  denotes the standard normal cdf. 

By substituting the approximate expression (5) in (4), 

and applying the biunivocal transformation 1( )−Φ ⋅  to both 

sides, the design equations become: 

 

0

1

0

0 0

1

1 1

0.5

( ) / ( 1)

0.5

( ) / ( 1)

c np
z

p q n N n N

c np
z

p q n N n N

β

β

+ −
=

− −


+ − =
 − −

 (6) 

where 
0

zβ  and 
1

zβ  are the standard normal quantiles 
0

β  and 

1
β , and 

0 0
/p K N= , 

1 1
/p K N= , 

0 0
1q p= − , 

1 1
1q p= −  

are the fractions of defectives and non-defectives 

corresponding the AQL and RQL. 

The simultaneous equations (6) are solvable with respect 

to sample size n  and the acceptance number c  with 

elementary algebraic manipulations. The results, although 

having an elementary expression, deserve some specific 

comment. 

3.1. Sample size 

As regards the sample size, it is convenient to express 

the solution in terms of two relationships. The sample size 

with item replacement is 

 1 0

2

1 1 0 0

1 0

'
z p q z p q

n
p p

β β
 −
 =
 −
 

, (7) 

and the sample size without item replacement (or, simply, 

the sample size) is 
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The final sample size n  is expressed in terms of the 

intermediate quantity 'n  because of the special meaning of 

the latter. This is, indeed, the sample size that would be 

obtained by omitting the term ( ) / ( 1)N n N− − , or, in other 

terms, the size that would be obtained by assuming for the 

mean µ  and the variance 2σ  the values relevant to the 

binomial distribution ( npµ = , 2 npqσ = ). Therefore, (7) is 

the solution of the design problem if the number of extracted 

defectives is binomial, instead of hypergeometric. This 

happens when sampling with replacement (or, better, re-

introduction) of the inspected items, but also in the much 

more practical and well-known case of lot-by-lot inspection 

of an entire production (covered in part 1 of ISO 2859 [6]). 

Summing up, solving the case of isolated lot sampling 

leads also to a solution of the case of lot-by-lot sampling for 

the number of defectives in a production (binomial 

distribution). This case is not discussed further in the present 

paper, but will be included in an extended version 

discussing also the lot-by-lot sampling for the number of 

defects (Poisson distribution). 

Both formulae (7) and (8) yield, in general, a non-integer 

value, while a final integer answer is needed. A given 

double-point specification, on the other hand, is in general 

not exactly met by an integer sample size. The obvious rule 

to follow is rounding n  by excess if one wants risks not 

higher than the specified one, and to round by defect if 

slightly higher risks are tolerated. In section  4 it is shown 

that, if the specifications can be met by an integer sample 

size, rounding (8) to the nearest integer yields, in most 

cases, the exact size. 

3.2. Acceptance number 

By solving (6), two expressions for the AN are obtained, 

that is: 

 
00 0 0 0.5c np z np qβ= + −  (9) 

and 

 
11 1 1 0.5c np z np qβ= + −  (10) 

The equations are equivalent if the non-integer value of 

n  given by (8) is used, but yield, in general, different values 

using a rounded value of n . This is simply due to the fact 

that an integer pair ( , )n c  is in general not able to meet 

exactly a two-point specification. In choosing between the 

two formulae one must consider that, with an integer n  and 

a non-integer c  given by (9), the approximated OC (5) will 

pass exactly through the PP; on the contrary, with the value 

given by (10) the approximated OC will pass exactly 

through the CP. Therefore, the provided equations for c  can 

be readily used to design with a one-point specification, 

which is required when the sample size chosen on the basis 

of different considerations (e.g. costs). In a two-point design 

using one or the other equation hardly makes a difference, 

since the obtained value must be rounded in its turn. 

It is useful to note that the term in the equations 0.5 is 

due to the continuity correction (which instead does not 

affect the sample size). Omitting the continuity correction 

would induce in many cases an error of one unit, which 

would make the design much less satisfactory, especially 

when the AN is low. 

 



4. PERFORMANCE OF THE DESIGN FORMULAE 

In order to show the accuracy of the proposed design 

formulae the following procedure has been followed. 

First, the exact OC for a set of sampling plans 

(determined by the values of N , n  and c ) has been 

evaluated using (2)-(3). Then, the exact position of two 

points in the OC, serving as PP and CP, has been evaluated 

for each plan. This data are reported in Tab. 1. 

Table 1. Data of the sampling plans used to test the design 

formulae. 

plan 

# 
N  n  c  

0
K  

(AQL) 

0
β  

(1-PR) 

1
K  

(RQL) 

1
β  

(CR ) 

1 10 2 0 1 0,8 7 0,06667 

2 10 2 1 3 0,93333 9 0,2 

3 20 4 0 1 0,80003 10 0,04334 

4 20 4 2 6 0,9391 17 0,08772 

5 50 8 2 6 0,95556 26 0,09961 

6 50 15 5 11 0,9463 25 0,1083 

7 100 8 2 12 0,947 53 0,0991 

8 100 15 5 20 0,9539 52 0,09844 

9 200 15 5 39 0,9522 105 0,1007 

10 200 35 15 64 0,9548 108 0,1023 

 

Afterwards, the two points PP
0 0

( , )K β=  and 

CP
1 1

( , )K β=  has been used to design the sampling plans, so 

that the obtained values of n  and c  can be compared with 

the actual values that meet exactly the specifications.  

For the sake of completeness, the results has also been 

compared with the only other closed-form two-points design 

known to the authors, which is described in [9]. This design 

formula, derived by a nonlinear transformation on the 

hypergeometric distribution, is: 
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2arcsin 2arcsin

z z
n

p p

β β
 −

=  
 − 

 (11) 

It is interesting to note that the structure of (11) 

resembles that of (7). No closed formula for c  is provided 

in [9]. 

Table 2. Results of sample size designs using (8) and using (11), 

compared with the exact solution. 

plan # N  n , exact n ,  (8) 

 

n , (11) 

 

1 10 2 2,1441 3,0619 
2 10 2 2,1441 3,0619 
3 20 4 4,3889 5,2059 
4 20 4 3,9688 5,9788 
5 50 8 7,6958 10,9203 
6 50 15 15,0265 22,9200 
7 100 8 7,5701 9,8856 
8 100 15 14,6343 18,9368 
9 200 15 14,4331 17,3863 

10 200 35 34,7079 43,6399 

 

Tab. 2 reports the results as concerns the sample size. 

The accuracy of (8) as a design formula is apparent. In all 

the examined cases, including those with very small N , n  

or c , the obtained value is very close to the exact one. In all 

the cases but #9, by rounding the result of the formula the 

exact sample size is obtained. In case #9 the result, 

14,43n = , is all the same very near to the exact solution 

15n = , and rounding leads to the very small error of one 

unit. The performance of (11) is, compared to the results of  

(8), uniformly and meaningfully worse. 

Table 3. Results of the acceptance number designs using (10) with 

the noninteger n  given by (8), and with the same value rounded to 

the next integer. 

plan # N  c   

(exact) 

c   

(noninteger n ) 

c   

(rounded n ) 

1 10 0 0,0598 0,0222 
2 10 1 1,0843 0,9778 
3 20 0 0,0678 0,0175 
4 20 2 1,9881 2,0077 
5 50 2 1,8486 1,9414 
6 50 5 4,99 4,9803 
7 100 2 1,8049 1,9358 
8 100 5 4,8196 4,9525 
9 200 5 4,7368 4,5797 

10 200 15 14,8476 14,9768 

  

 Tab. 3 reports the results as concerns the acceptance 

number calculated using (10) (that is, taking the RQL and 

CR as a reference, like in the ISO 2859-2 [5]). The formula 

has been calculated using both the noninteger sample size 

given directly by (8), and using the same value rounded to 

the next integer. In both cases all the obtained values are so 

close to the exact solution, that a simple rounding achieves 

it. 

The obtained results show the performance of the design 

formulae for the more critical case of low values of N , n  

and c . It can be easily verified that the design is even more 

accurate for higher values of these parameters. 

5. CONCLUSIONS  

A set of simple closed-form equations to design single 

sampling plans by attributes for isolated lots have been 

presented. The formulae can be calculated by hand with a 

non-programmable pocket calculator and a table of the 

standard normal distribution. They allow one to calculate 

easily the sample size and acceptance number required to 

meet accurately a two-point specification mask. Also an 

accurate single-point design can be readily obtained. The 

ability of the formulae to derive the right parameters has 

been shown numerically in a set of cases, chosen among the 

typically critical ones. 

The formulae allows one to avoid the use of complicated 

iterative algorithms, and are able to improve distinctly the 

procedures in the ISO 2859 norm, in which special tables 

are required, and a much less flexible design is allowed. The 

formulae, therefore, appear clearly suitable for inclusion in a 



norm or a guide about sampling plans by attributes. 

REFERENCES 

[1] International Organization for Standardization, ISO 2859-

10.2006 – Sampling procedures for inspection by attributes 

– Part 10: Introduction to the ISO 2859 series of standards 

for sampling for inspection by attributes. ISO, 2006. 

[2] W. A. Levinson, “Acceptance sampling plan designer.” 

[Online]. Available: http://www.ct-yankee.com/sampplan/  

[3] Servicco Corp., “Acceptance sampling software based on the 

OC curve.” [Online]. Available: http:// 

www.samplingplans.com/ software_oc.htm  

[4] T. P. McWilliams, E. M. Saniga, and D. J. Davis, “On the 

design of single sample acceptance sampling plans,” 

Economic Quality Control, vol. 16, no. 2, pp. 193–198, 

2001. 

[5] International Organization for Standardization, ISO 2859-

2.1985 – Sampling procedures for inspection by attributes – 

Part 2: Sampling plans indexed by limiting quality (LQ) for 

isolated lot inspection. ISO, 1985. 

[6] ——, ISO 2859-1.1999 – Sampling procedures for 

inspection by attributes – Part 1: Sampling schemes indexed 

by acceptance quality limit (AQL) for lot-by-lot inspection. 

ISO, 1999. 

[7] W. L. Nicholson, “On the normal approximation to the 

hypergeometric distribution,” The Annal of Mathematical 

Statistics, vol. 27, pp. 471–483, 1956. 

[8] S. Lahiri, A. Chatterjeea, and T. Maiti, “Normal 

approximation to the hypergeometric distribution in 

nonstandard cases and a sub-Gaussian Berry–Esseen 

theorem,” Journal of Statistical Planning and Inference, vol. 

137, no. 11, pp. 3570–3590, Nov. 2007, special Issue: In 

Celebration of the Centennial of The Birth of Samarendra 

Nath Roy (1906-1964). 

[9] W. Caspary and G. Joos, Spatial Data Quality. CRC Press, 

2002, ch. 7, pp. 106–115. 

 


	PagNum1137: 1137
	ISBN1137: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum1138: 1138
	PagNum1139: 1139
	PagNum1140: 1140
	PagNum1141: 1141


