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Abstract — This paper presents the new self-testing In this paper a new self-testing procedure will be
method for diagnosis of analog parts in mixed-signapresented. It bases on a new multi-port fault disg
embedded systems controlled by microcontrollerse Thmethod and the simplified TCRBF neural classifir [
tested analog part is stimulated by a sinus-wapel@d by The diagnosis method is used to create a fauliodiaty
the onboard generator and its responses are sampledin the form of dispersed localization curves idgallited for
selected nodes by microcontrollers ADC. The measend the TCRBF neural classifier. Additionally, measuegits of
space is represented by differences between vabfies parameters of the tested analog part are perfotnyethe
selected node voltages. Fault detection and lat#diz is  reconfigurable BIST created from peripheral deviokshe
performed by a Two-Center Radial Basis FunctionRBE)  control unit controlling the electronic embeddedtsyn.
Neural Network. The diagnosis procedure was implaet:
and simulated in a PC. 2. FAULT DIAGNOSISMETHOD

K eywords fault diagnosis, neural network, BIST The method will be illustrated on an exemplary agadart
represented by the low-pass Tow-Tomas filter shiovifig. 1.
1. INTRODUCTION

At present, embedded electronic systems which ar
characterized by an “intelligent unit”, often based a
microcontroller, a digital signal processor (DSP) @ 1
programmable device (e.g. FPGA, CPLD), predomimate R1
the electronic market, because information about th§ —
operational environment and controlled objects aiten Uin
obtainedvia analog sensors. Analog signals are transmitte: -
and initially processed in analog parts, howeveala@gto-
digital processing and data processing are reabizedigital =
parts. Therefore, the analog part has to work ctye
because an incorrect measurement signal can leaa to Fig- 1. Tested analog circuit —low-pass Tow-Tofilér, where
wrong decision of the control unit, what can evesutt in ~ R1=R2=R3=R4=R5=R6=10kC1 =33 nF, C2=6.8nF
damage of the controlled device. Hence, the emhkdde ] ]
system should be able to run self-testing of anphg. Generally_, the S(_alf—testmg proce_dure consists hoéd

Self-testing of analog circuits bases on fault dizgjs ~St2ges. At first, during the pre-testing stage, T@RBF
methods. When elaborating these methods we hatakeo n_eural classmer_ is _constructed on the basis d¢draily (_)f
into consideration continuous values of circuinedmts, the dispersed localization curves. These curves desciie
continuous nature of stimulation and response tgaad Pehaviour of the tested circuit following changes its
the fact that these signals can assume the shameyof €léments values. The second stage is responsibkirfos-
function, the presence of element tolerances ancliti Wave stlmu!atlon_ of the tested circuit anq for rmﬂzaments
nonlinearities. Additionally, especially for noreetrical ~©f réal and imaginary values of voltages in actgssiodes.

objects modelled by electrical circuits we haveygmborly At the last stage, the TCRBF neural classifier cistand
defined system models. Thus neural networks camry ~localizes a fault of the analog part.

efficient solution in fault diagnosis methods. Mawpes of

neural networks are used as fault classifiers: back 2-1.ldeaof the method

propagation [1], probabilistic [2], self-organizijg] radial Let Xy be a set ofN accessible measurement nodes
basis function [4,5], neural networks based on TCRBXy={Xi, X, ...,Xx}. Thus, we have the following set of
Functions [6]. values of node voltagesuy = {Vo,Wn}n=1 N Where
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U, = Vo +j-w,. These voltages can directly create aNj2
dimensional measurement space in a way similag o],
but in this case localization curves representipgiations
of values of circuit elements often characterizedely
different lengths, which depends on circuit sewiitj and
often they are not situated optimally. This makedifficult
to perform correct fault localization.

Hence, it is proposed to create a new measuremer

space, where coordinates have the following forfwg,
Whnatn=2,..N WNEIEV 1, = Vi = Vig, Whna, =Wy - Wag. That
is we create the space represented by differenetgebn
values of node voltages. In this case we improve th
“dynamics” of length changes of localization curves
Lengths are more similar between themselves andesare
more separated as shown in Fig. 2 and Fig. 3.

It will be explained on the example of the circsiitown
in Fig. 1. The denominator for all its node tramgtenctions
is following:

d=R (R, IR, [R,[R = X,[R,[R,[R + X, [X,[R,[R,)(1)

whereX; = -1/( wQ,), X, = -1/(w@,). It is dependent on all
elements, especially oR;. However, the numerators for
next node transfer functions have the forms:

m =X,"R, R, R, "R
my =X - X, R, Ry K,

my=-X,-X,-R,-R;- R, 2)

Thus, we obtain the following differences betwee
numerators of transfer functions for respectiveasod

—m =X "R, R;- Ry - (X, — Ry)
-my=X,-X, R, ‘R, -(R;+R,)

nt,

s 3)

It is seen from (2) and (3) that the differenog—m,
between the %L and the ' node function numerators is
dependent on the same elements as the
numerators. The same situation is for ilpe- m, difference.
That is we decrease the size of the measuremece syfat
decreases the size of the fault dictionary, simmeltasly
keeping the same level of the localization resotutiBut
this operation increases the “dynamic” of measurgme
signals, because signals for neighbouring nodesnanesd
about 180° and they added to themselves (see Fig. 1

The new measurement space is described by th

following transformation:

T.(p) :Z(Re(un(pi)_un—l(pi))iZn—Z (4)
+ Im(un( Pi )~ un—l( P ))' 2n—3)

where:i, - is a coordinate vector along theaxis, u,(p) —
complex value of voltage in the nodefor a change of;

respecti

in two three-dimensional spaces (Fig. 2, 3). Laedion
curves in these figures were drawn for +50% charafes
element values with reference to their nominal @8fj,om

N —
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o
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Fig. 2. The map of localization curves for thegédscircuit in the
3-dimensional measurement space:uRg( Im(u,,1), Rels ).

Localization curves are a graphical descriptioriofuit
proprieties following from changes of its elemgatues. All
curves cross at a point which is the nominal stdté¢he
circuit. Assumption of element tolerances causspaision
of localization curves. Thus we need a classifighwood

ngeneralization capabilities to correctly localizalts. This

requirement can be fulfilled by the TCRBF classifi@hich
is constructed on the basis of dispersed locatinaturves.
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Fig. 3. The map of localization curves for thegédscircuit in the
3-dimensional measurement space:uRg( Im(us,,1), Im(us ).

. : e 2.2. The measurement procedure
value of thd-th elementj = 1,...,1, | — the number of circuit P

elementsN — the number of accessible measurement nodes. "€ measurement procedure s

The transformation (4) maps the changes of circuifticrocontroller ATmegal6 and its internal deviced]{
element values [ }1 . , into a family of localization analog multiplexer, 10-bit ADC and 16-bit TimerHid. 4).

curves placed in the (8- 2)-dimensional measurement e tested analog part is stimulated by the sinagew
space. For the circuit shown in Fig. 1 we have a 4and its responses are sampled in particular nogiethd

dimensional space. Thus the transformation (1yésented ADC in moments established by the Timer.
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TESTED analog CONTROL UNIT _
— ANALOG PART < Vi = (un,l III’|in,1 + un,2 |j""in,z) D( (5)
i Is) — _
Yin low-pass 3 W, = (un,l |]'lin,z U, |]'lin,l)l;h/
i Tow-Tomas Filter wm
b A §§ where the valugy=1/U;, is constant and known, what
ot ‘g considerably simplifies calculations of these valugecause
stimution | o we use only addition and multiplication operations.
m . .
- EDATS OS] z Next it calculates differences between these values
ine Generator SCLK SCK
ADSE33 Fovne 53 | e Vinds = Vn = V1, Wnna, = Wa - Wi
TEST SIGNAL
GENERATOR BLOCK
Fig. 4. Example of the electronic embedded systetine self-
testing configuration end_samping <1 MEASUREMENT
chanirel < 0 PART
. . . ADMUX <= channel
Timings of the measurement procedure are shown ir |_ ... el T Compara s

Triggering of ADC
Start ADC conversion Il ADC Conversion
Complete Interrupt
OCR1A < t samplefi
= u_res{ij < ADC
-~

Fig. 5. Each signal is sampled three times, whamre t
distances between samples are set to one fouttte gferiod
T. Time distances between samples for subsequendlsig
are equal to a half of the period. Thanks to this, allowed

=127
( end of sampling?)

No

to sample all signals at the same moments in ogldt the T
start of sampling, because sampling of the nextaigs "Ujfgﬂge;e(;;g[g]j;;5;];/;‘“T\\\
shifted about one period. Sampling of the inpubaig, is TR e B i T
needed to establish a random shift timeof the sampling “47“"5[;’““7’9%? e |
. - . . . . 4 _res{Ufe—u_res - f_arrse I
series. The third sample of each signal is useglitoinate W res{ < u_resl1] - UToffset |
- 3] 3] - U2 _offset
the voltage offset. The first,; and secondl,, samples of o i raetd - U3 ofiet |
the node voltage signa), are used to calculate their real and | Sed)s - iroee e
imaginary values. P
i ¥
1 ' in, vi_meas < (i _resf0]*u_res{3] + u_res[1j*u_res(d])*KAPPA

wi_meas < (u_res[Tf"u_res[3] - u_res[O]*u_res{4f)"KAFPFA
V2_meas < (y_resf0]*u_res{6] + u_res[1}*u_res[T})* KAPPA CALCULATION
WZ2_meas < (1_res{1f*u_res[6] - u_resfOf*u_res{7i)"KAPPA PART

v3_meas < (u_res{Of*u_resS] + u_res{1]"u_res{10])*"KAPPA
W3_meas « (u_res{1]"u_res(S] - u_resf0]"u_res[t(])TKAPPA

¥

v21_meas < u2_meas - ¥i_meas
w2i_meas < w2_meas - wi_meas

v32_meas < u3_meas - uZ2_meas
H W32 _meas < W3_meas - w2_meas
I S
- ret
-1 i
5 Fig. 6. The algorithm of the measurement procedure
2 T
= 3. USE OF THE TCRBF NEURAL NETWORK
FeL ] R Rt (O RRE R TEEEERE S oS FERPEEREERRRER
i 3 1 i 5 5 i Detection and localization of faults in the progbseethod
T 55 5 65 7 75 8 as  are performed by a neural network with TCRB funcif6,7].

) The usefulness of the TCRB function in dictionargthods
based on localization curves follows from the fdwt the
localization curve (Fig. 7a) can be transformeq avith a few
TCRB functions (Fig. 7d). In advance, some expanisavith

GZiadial Basis Function Neural Networks (RBFNN) for

iagnosis purposes were performed [4,5]. Unforlgatn
accurate transformation of localization curves vRBFNN
requires a lot of Radial Basis (RB) functions ine th

architecture (Fig. 7b). Hence it appears an idemtwtruct a

new neuron for better transformation of stretchiedters of

dispersed localization curves.

The TCRB function radially maps the space around a
line segment with endpoint$® andc® (Fig. 7c) with the
following equation:

Fig. 5. Timings of the measured signals duringstlétesting
procedure in the input node and nodesndX,.

The algorithm of the measurement procedure (Fig.
consists of a measurement part which is respondiae
control of the measurement. The main function curés
the ADC, starts the timer and waits for the endarhpling
(it waits for the measurement of nine voltage sasiplThe
interrupt service of the timer starts the ADC casien and
actualizes the counting time between next samplés
interrupt service of the ADC conversion completeesathe
voltage samples and changes the channel of theoganal
multiplexer to measure the next node voltage. utime
calculation part, the microcontroller computes tieal v, 1
and imaginarywv, parts of then-th node voltage basing on: y(x)= exp{— 2( )

s(x

5t —wi(x»ﬂ, ©
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where: s(x) is the scaling function describing the real value

Three TCRB functions

Iocalizgtion curve dispersion changing form to o7 and "f\\ @ Vi ST fy
wi(x) (i = 1, 2, ...,n) are center functiongddepending on v — N
coordinates of centers” andc® [6]. 24770 2 f
{ /X )2 O_D 2 | o
— — M, > . -
(@ (b) Wea=omm O 5 = A
° Exemplary localization curve ° centers of RB functions 7& H H QC_J
4 4 V3 ;=0 = . . 3
3 3 § f
— C
1 1 Output values — |A -A L) " i s
0 0 o —05-1 Input 1% hidden layer 2™ hidden layer Output layer — zz> :
1 1 ’ layer with TCRB  with maximum Indication R ——
0 -6 -4 -2 0 functions functions faulty component Indication state
of the circuit
(d)
5 Four centers of TCRB functions .
4 Fig. 9. The TCRBF neural network structure.
3 . . .
5 v Its architecture is based on other neural netwavits
; / RB functions (RBFNN, Probabilistic, Generalised
0 Regression). TCRB functions assigned to localizatiorves
-1

are placed in the®Lhidden layer. They play the role of

6 4 2 0 6 4 2 0 radial mapping of dispersed localization curves réal
_ o _ values from the range (0, 1]. Dispersion is causedircuit
Fig. 7. Idea of localization curve transformation element tolerances. Neurons in th¥ Bidden layer group

with RB and TCRB functions. TCRB functions inC classes, which include singletons and

. . — biguit , and d i I M) of
Applying some TCRB functions to each Iocahzanon-?-rgngglgut%rlj)tléps and produce maximum values (M) o

curve of the testing circuit gives the possibiltty obtain
information about distances between the measurepunt
and localization curves. This information is givas a
vector of real values from the range (0, 1]. If the
measurement point lies near the localization ctinesm one
of TCRB functions assigned to that curve has thkieva
close to 1. Otherwise, if the measurement poistfile from

::Tjervlgzﬂilzsgg?ug:r;iissl'lco-rg lﬁ'iefunnucrtr:ggf ;Sfe'ggl?gg'; An additional summing function sums perceptron autp
: d .. values and gives the value= f; + f, + ... +fc, which

functions for each Iocqllz_atlon curve depc_ends og Itpresents the state of the testing circuit as alesideger

curvature. For a curve similar to a straight lindyoone lue f th

TCRBF is needed. The more bent the curve is theemor o o | oM (e range [(.0:.]' : e

TCRB functions a;e required. A araphical illusteati of The TCRBF classifier is able to distinguish between
q ' grap three states of the circuit: fault-free state=(C), single fault

activation regions of TCRB functions for exemplary S : 7
dispersed localization curves is shown in Fig. 8. or ambiguity group (¥ s < C), multiple fault = 0).

The output layer is a perceptron with a hard limsnhsfer
function, which produces a vectbrwith 0 and 1 values.
Each neuron in the output layer is fed only witlo tsignals:
maximum value of TCRB functions assigned to a ctass
constant bias &= The network output vectol combines
information about the state of the testing circaitd
moreover about the fault class.

A. Fault free state

:&F‘B;‘f‘g’t‘ If the measurement point is located near the ndmina
b point then all TCRB functions located closest te tiominal
' point and assigned to different classes have outplites
Vi, ---, Yc greater thaml. Hence the sum of all values from
the perceptron outputs gives= C. It indicates a fault-free
state of the circuit.

1
TCRBF with

i) < 0nst B. Single fault or ambiguity group
0 . . .
0 1 2 8 4 X, 5 & 7 &8 8 10 Else if the measurement point is located near dne o
localization curves assigned to a fault class aardfriom
Fig. 8. Graphical illustration of activation regiaf TCRB others, then only one valyeis grater thanl and the sum of
functions for exemplary dispersed localization estv all values from the perceptron outputs giges 1. In this
case a single “one” in the output vecfoindicates a fault
3.1. Architecture of TCRBF classifier class (single fault or ambiguity group). We meetthwi

ambiguity also when 1 s< C. In this case the measurement
point is located near more than one localizatiomves
assigned to different fault classes.

The TCRBF classifier proposed in this paper isradh
layer feed-forward network (Fig. 9).
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C. Multiple fault bind identification curves with fault classes. lkase of lack
of the circuit model, when only experimentally acqd
measurements are available, TCRBF centers cantbmet
with the fuzzy c-means clustering algorithm [4].

The parameterA of the output layer is selected
experimentally in order to decrease the classiticagrror.

Finally if the measurement point is located famirany
of localization curves then all valugsare lower tham and
the sum of all values from the perceptron outpiiegs =
0. In this case we meet with a multiple fault andisi
impossible to indicate which element is faulty.

A constant parameterd [0 (0, 1), applied to the
perceptron layer, makes it possible to describesthes of
decision regions in the measurement space ARose to 1
decision regions are narrowed to spaces located n
localization curves. It is best suited for circuitith small
element tolerances. Otherwise,ifis close to 0, decision
regions are wide and circuits with greater elemelerances
can be correctly diagnosed.

3.3. Simulation results

The proposed diagnosis procedure with the TCRBF
cSlassifier was used for faults detection and laegion in
the low-pass filter shown in Fig. 1. Three TCRBE&sslfiers
with different architectures were constructed (€ab) and
their generalization capabilities were comparedifferent
number of the following input coordinates was usedach
classifier: Reg, 1), Im(U,,1), Rels 5), Im(us o).

3.2. Construction of TCRBF classifier

. Table 1. TCRBF classifiers parameters.
In contrast to RBF or feed-forward back-propagation

(FFBP) neural networks, TCRBFNN does not require input | Number Number of TCRB functions
training. Centers of TCRB functions are placed 0N gimen-| of TcrRe| NEWwork per each element
localization curves of the testing circuit with anckwn sion | functions| 2eteclrel o Te T TR Re [Re | C. | G,
model. Scaling parameters of TCRB functions araiobtl
; g 2D 19 2-19-4-4 4 g

on the basis of Monte Carlo analysis in selecteders.

The center selection method bases on linear inegipo b 28 3-28-55 3 3 48
of localization curves. Starting from two centetaced on 4D 32 43255 | 2| 3 § 1 4 3§
extreme points of the localization curve, in neeips points
farthest to the interpolation curve are selectedeas centers The number of TCRB functions and classes in each

and also as new interpolation nodes. This procedsire classifier depends on the dimension of the inpuicsp
repeated until the maximum distances between latadin =~ (except the curvature of localization curves). Foore
and interpolation curves are lower then the assuligtdnce dimensions, localization curves are more distaminfreach

Omase other and faults are more distinguishable. In gaise more
In the second step for all selected centers the t&élon TCRB functions are needed and more classes carehted.
Carlo analysis is performed in order to obtain liaedion Localization curves of some elements cover eackroth

curves dispersion. With assumption of normal distiibon and form ambiguity groups, for example 4RC;}. Hence
of points in each cluster, standard deviations oftivariate ~ one needs to apply TCRB functions only for one elehin
normal distribution are estimated and used as rsgali the ambiguity group. An increase in the number rgdut
parameters of TCRB functions. dimensions from 2 to 3 caused separation of logtdin

Fig. 10 presents interpolation curves and datateisis curves in the ambiguity group §RRs, Rs, Ci}. For this
obtained from the Monte Carlo analysis with assummpof  group two classes were formed: fB;} and {Rs, Rg}.

3% element tolerances for the circuit shown in Eig. Graphical illustrations of the®1hidden layer (with TCRB
functions) activation regions in 2- and 3-dimensiomput
05 spaces are shown in Fig. 11 and Fig. 12. We cam segy
0 & good fit to localization curves.
05 \s> % :
: nominal state 05
a2
s i 0
Ss . B RW—\%%}A 1 05
E o Ri+ ’
R3- =
25 4 R4 1 S5
o R4+ c
3 5 R6- — - 2
% 05 1 15 2 25 3 35 4 25
Re U, M
3
Fig. 10. Interpolation curves and data clusters 35
obtained for the circuit shown in Fig. 1 o 0T as Uj v S e
1

and used in TCRBF classifier construction stage.

. . Fig. 11. Graphical transformation of dispersed liaetion curves
t

Conne<_:t|0ns between thé a_nd t_he 2 hidden layer are by the TCRBF neural classifier in the 2-dimensionahsseement

made easily, as we know the circuit model and khow to space with coordinates: Rgg), Im(u, 1).
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N R 4. CONCLUSIONS

T
- The new self-testing method with the TCRBF classifi
i (R, @ (@) . 5 R presented in this paper is an efficient way to oéesg
B 2.8 R analog parts in mixed-signal embedded systems cdh}rdr
s i by microcontrollers. The novelty of the method ligs
N R+ creating a new measurement space represented by
E: o differences between values of node voltages.
4 o RS- The TCRBF classifier used to detect the stateeo€iticuit, as
2 R opposed to other types of neural classifiers (paockagation,
M radial basis, probabilistic), has generalizatigpabtdities ideally
4 </\2\ . : suited for dictionary methods based on localizatimmves.
ReU, M O . v Unlike FFBP and RBF networks, the TCRBFNN requiges
' “ lower size of the data set used for constructioandd the
Fig. 12. Graphical transformation of dispersed liaation curves construction phase is shorter an_d less burdelznslome. .
by the TCRBF neural classifier in the 3-dimensionahsoeement Furthermore, on the basis of the limited size o th

space with coordinates: Re(), Im(u,.1), Re(s »). construction data set, the TCRBF classifier giveg t
possibility to extend diagnostic information abthg testing
The classification error of the created TCRBE dfgs  circuit. It is possible to distinguish between alfdree state
did not exceed 2% and was mainly caused by imphpperof the circuit, a single fault, an ambiguity groamd a

classified signatures near the nominal state oitueit. multiple fault.
The TCRBF classifier constructed on a data set
belonging to dispersed localization curves is alde REFERENCES

distinguish between the nominal state of the ciraingle . . . o o
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3 fault class: {R4,C2}

1% fault class: {R1}
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