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Abstract − The pitch measuring accuracy for gear 

measuring instruments (GMIs) is evaluated by measuring a 
calibrated artifact. We proposed a novel artifact which 
called multiball artifact (MBA). The MBA is composed of 
the pitch balls assumed to gear teeth and the reference axis 
assumed to a center axis of gear. The MBA can be calibrated 
more accurate than a conventional pitch artifact. When the 
MBA is calibrated, it is important to eliminate an error of 
measuring instrument; therefore we calibrate the MBA 
adapting the multiple-orientation technique. In the multiple-
orientation technique, the MBA is set up in difference 
orientations around the reference axis and the measurement 
error is eliminates by averaging the measurement value for 
all orientations. There are, however, Fourier components of 
the measurement error that can not be eliminated depending 
on the total number of orientations. In this paper, we 
propose the advanced calibration method; the error 
separation method for the multiple-orientation technique is 
improved and the total number of orientations can be 
reduced. The superiority of the proposed method is clarified 
from the calibration results using the MBA. 

Keywords: pitch, multiple-orientation technique, error 
separation technique 

1.  INTRODUCTION 

A pitch of gear teeth is measured using various 
instruments. The pitch-measuring accuracy of gear 
measuring instruments (GMIs) is evaluated by measuring a 
calibrated gear artifact or a gear like artifact [1-3]. Gears, 
however, have a form error and surface roughness [4, 5] and 
it is difficult to obtain a stable measurement result when the 
measurement position on the gear face slightly differs. In 
view of this situation, we proposed a novel artifact 
composed of equally spaced balls called a multiball artifact 
(MBA) as a pitch reference artifact for GMIs [6-8]. The 
balls can be manufactured with an accuracy of several tens 
of nanometer; therefore the measurement with extremely 
small uncertainty can be expected. 

When the MBA is calibrated, it is important to eliminate 
an error of measuring instrument. For the elimination 
method, it is proposed the multiple-orientation technique [9]. 
These methods eliminate the systematic error while the 
MBA is set up in different orientations. There are, however, 

Fourier components of the systematic error that can not be 
eliminated depending on the total number of orientations. In 
this paper, we propose an advanced calibration method for 
the multiple-orientation technique. The superiority of the 
proposed analysis method is clarified from the calibration 
results using the MBA. 

2.  MULTIBALL ARTIFACT 

Figure 1 shows a photograph and a schematic view of 
the manufactured MBA. The balls on the outer 
circumference (which are named pitch balls) are assumed to 
act as gear teeth. The ball at the center (which is named the 
centering ball) is used to set a reference axis and the 
reference axis is assumed to a center axis of gear. The refer- 
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(b) Schematic view 

Fig. 1.  MBA proposed as a new reference for GMIs. 



-ence axis is perpendicular to the datum plane and passes 
through the center of the centering ball. The size of the pitch 
balls and the centering ball are 12.7 mm in diameter and the 
accuracy is grade 3 as standardized by ISO 3290. The 
number of pitch balls is 24. Pitch balls are arranged on a 
curvic coupling (type: 24180-120V, manufactured by Okubo 
Gear Co., Ltd.) in contacting with both tooth flanks and the 
pitch balls are also in contact with a cylinder manufactured 
to be concentric with the centering ball.  

For the centers of each pitch ball, the difference between 
the theoretical angular position and the actual angular 
position around the reference axis is named the angular 
deviation, where, the theoretical angular pitch position is the 
angular position for the ideal pitch ball arranged at a 
complete equal interval and the actual angular position is the 
angular position for the actual pitch ball of the manufactured 
MBA. GMIs can be evaluated by measuring the calibrated 
angular pitch deviation. 

3.  MULTIPLE-ORIENTATION TECHNIQUE 

We calibrated the angular deviation of the MBA using a 
coordinate-measuring machine (CMM) to measure each 
pitch ball center and by adapting the multiple-orientation 
technique. Figure 2 shows the measurement setup. The 
rotary index table was placed on the CMM table and the 
MBA was clamped onto the rotary index table. For the 
multiple-orientation technique, the MBA was set up in 
different orientations using the rotary index table. The 
angular pitch deviation of the MBA was measured at each 
orientation. Figure 3 shows a relationship of the MBA 
positions at each orientation. The multiple-orientation 
technique eliminates the systematic error by averaging the 
measurement value for all orientations. The detail of the 
multiple-orientation technique is described at the following. 

If the pitch balls are arranged at a complete equal 
interval, the nominal angular position of ith pitch ball is 
defined by 

 ( ) ( ) ,,,2,112 Nii
Ni L=−=
πθ  (1) 

where N is the total number of pitch balls and the pitch ball 
number is assigned in clockwise direction. We denote the 
true angular position of ith pitch ball by T(θi). Additionally, 
we define the angular pitch deviation by 

 ( ) ( ) ,iii TP θθθ −=  (2) 

We denote the measurement value of P(θi) by M(θi, φj), 
which is sum of P(θi), the systematic error E(θi) and the 
nonsystematic error Erand, where Erand is the component of 
the random errors of the CMM: 

 ( ) ( ) ( ) ,, randjiiji EEPM +++= ϕθθϕθ  (3) 

where φj is the rotation angle of rotary index table at jth 
orientation as shown in Fig. 3. The rotary index table rotates 
at equal intervals as follows: 

 ( ) ( ) ,,,2,112 mjj
mj L=−−=
πϕ  (4) 

where m is the total number of orientations. Here, we denote 
the mean value of M(θi, φj) for all orientations by 
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where the expected value of Erand is zero and E(m)(θi) is a 
curve composed by the sum of the multiple of mth-order 
Fourier component of E(θi). It is explained by the following 
law of the Fourier series: 

”An arbitrary periodic curve of 2π can be expressed by 
the Fourier series, and when n-number of curve with a phase 
shift of 2π/n at a time are averaged, the averaged curve 
shows the sum of an integral multiple of nth-order Fourier 
components of the original curve.” 
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Fig. 2.  Overview of MBA measurement on CMM. 

 

 

Fig. 3.  Relationship of MBA positions at each orientation. 
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Figure 4 shows the measurement result of m = 3. The 
dots are the measurement value M(θi, φj) for each orientation 
and the line is the mean value μ(θi). In the exiting multiple-
orientation technique, the calibration value of P(θi) is 
estimated by μ(θi); however, μ(θi) has E(m)(θi). We propose 
the advanced analysis method at the following section. 

4.  ADVANCED ANALYSIS METHOD 

4.1. Improvement of error separation method 
The origin of E(θi) contained in M(θi, φj) is different at 

each orientation. We shift M(θi, φj) so that the origin of  
E(θi) at each orientation becomes uniform as follows: 

 ( ) ( ) ( ) ., randijijji EEPM ++−=− θϕθϕϕθ  (6) 

We denote the mean value of M(θi‐φj, φj) by μ'(θi) as 
follows:  
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where P(m)(θi) is a curve composed by the sum of the 
multiple of mth-order Fourier components of P(θi). Here, let 
subtract μ'(θi) from M(θi ‐ φj, φj) and we obtain the 
following equation. 

 ( ) ( ) ( ) ( ) ., )(
i

m
randjiijji PEPM θϕθθμϕϕθ −+−=′−− (8) 

Figure 5 shows the calculated result of Eq. (8) for the 
measurement value. We can obtain P(θi) using the data for j 
= 1 (φ1 = 0). The statistics accuracy is not enough because it 
is handling only the data for j = 1 despite the measurement 
of m-orientations. And so, we analyze to obtain P(θi) using 
the measurement value for all orientations. We make the m-
numbers of μ'(θi+φj) which is μ'(θi) with the phase shift of φj. 
We subtract μ'(θi+φj) from M(θi, φj) to obtain 
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Figure 6 shows the calculated result of Eq. (9) for the 
measurement value. We denote the mean value of Eq. (9) for 
all orientations by 
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Fig. 4.  Measurement results of M(θi, φj) and μ(θi). 
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Fig. 5. Calculated result of M(θi - φj, φj) - μ'(θi). 
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Fig. 6.  Calculated result of M (θi, φj) - μ'(θi +φj). 

pm(θi) is expressed the form without E(θi); however, it does 
not contain P(m)(θi). 

4.2. Improvement of orientation number 
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GMIs are not evaluated about Fourier components larger 
than the total number of pitch balls according to the 
sampling theorem. When we perform the calibration at the 
total number of orientations as the number of pitch balls, 
pm(θi) contain the required Fourier components for the 
evaluation of GMIs. It, however, takes very long time and it 
is difficult to keep a stable environment during the 
measurement. In addition to the section 4.1, we propose the 



improved method so that the total number of orientations 
can be reduced. 

pm(θi) can not be obtained when the total number of 
orientations is m. We compensate the deficient Fourier 
component from the measurement of another total number 
of orientations. When the total number of orientations is n (≠ 
m), we denote the calculated result of Eq. (10) by pn(θi).  
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Fig. 7.  Analyzed results of p3(θi) and p8(θi). 
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Fig. 8.  Fourier components of p3(θi) and p8(θi). 
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Fig. 9.  Analyzed results of p3×8(θi) and p3×8(θi) – p24(θi). 

Figure 7 shows the analyzed results of pm(θi) for m = 3 
and pn(θi) for n = 8, respectively. Figure 8 shows the Fourier 
components for two curves, respectively. It can be 
confirmed that P(3)(θi) for p3(θi) and  P(8)(θi)  for p8(θi) are 
not contained. 

Here, we make P(m)(θi) from pn(θi). We make the m-
numbers of pn(θi+φj) which is pn(θi) with the phase shift of 
φj = -(2π/m)×(j-1). We denote the mean value of pn(θi+φj) by 
μ(m,n) (θi) as follows:  
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where P(m×n)(θi) is a curve composed by the sum of the 
multiple of m×nth-order Fourier components. 

Here, let add μ(m,n) (θi) to pm(θi) and we denote its curve 
by p 

m×n (θi) as follows:  
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Figure 9 shows the result of P3×8(θi) analyzed from the 
measurement value for m = 3 and n = 8. The total number of 
orientations was 10 because we performed that one of 
orientations for m = 3 and n = 8 was a common orientation. 
On the other hand, we obtained P24(θi) analyzed from the 
measurement value for 24 orientations which is the total 
number of the pitch balls. The difference between P3×8(θi) 
and P24(θi) is shown in Fig. 9 and was less than ±0.15 arcsec. 
The superiority of the proposed analysis method which is 
calculated from the small total number of orientations is 
clarified. On the other hand, we obtained P24(θi) analyzed 
from the measurement value for 24 orientations which is the 
total number of the pitch balls. The difference between 
P3×8(θi) and P24(θi) is shown in Fig. 9 and was less than 
±0.15 arcsec. The superiority of the proposed analysis 
method which is calculated from the small total number of 
orientations is clarified. 

5.  CONCLUSION 

It is important to eliminate the error of measuring 
instruments when we perform the calibration for the pitch 
artefact. For elimination method, the multiple-orientation 
technique is effective. There are, however, Fourier 
components of the measurement error can not be eliminated 
depending on the total number of orientations. In this paper, 
we proposed the advanced analysis method. The multiple- 
orientation technique is improved as following two points. 

• The improvement of the error separation method 
• The improvement of the total number of orientations 

The proposed analysis method expresses the calibration 
value without the measurement error. The analyzed result 
which was the combination of different orientations (m and 
n orientations) and the analyzed result which was large 



orientations (m×n orientations) were equated at less than 
±0.15 arcsec. The proposed analysis method that can be 
calibrated in high accuracy and in a short time is effective. 
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