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Abstract − Optical flats are required for spreading 

accuracy to mechanical and optical instruments, ordinarily 
by optical interference. Traceability of optical flats is 
ordinarily made by Fizeau interferometer. Traceability of 
this one requires higher accuracy flats, not available in 
secondary laboratories. These laboratories can accede to 
absolute self-calibration principles, by a method proposed 
by Bernard [1], who compares three flats among them 
through Zernike polynomials [2], representing these last 
their topographies. 

Two problems are found when the process is intended 
to set up: (a) the Zernike polynomials have not easy 
geometric meaning and direct equivalence with CAD 
entities; (b) neither fringes nor levels of gray of 
interferograms have direct equivalences with the shape of 
flats or virtual membranes.  

For modelling shapes we adopted the self calibration 
concept of Bernard, but using b-splines models with ring 
shape, instead Zernike.  This substitution offer important 
algebraic simplifications and possibilities for exporting 
shapes to CAD; supporting validation. 

For converting interferograms to shapes of membranes, 
three major problems are present: the aspect of patterns, the 
ambiguity in inflection areas, and the adequate interpretation 
of gray scales. 

After applying low pass filters to brightness, two 
methods were applied: (a) heuristic genetic, (b) inverse sine 
correlation of gray for relief.  Success in interpretation of 
shape have been by now better than 75%.  
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1. INTRODUCTION  

1.1  Motivation 

Traceability in flatness is not absolutely necessary, 
since it is a geometrical property, and not a quantity 
established by agreement, as the second or the meter are. 
The traceability of maser flats with primary laboratories, 
results long and expensive. It is very useful then, a method 
for self calibration. 

 On the other hand, comparison of flats by 
interference, when is made by man, ordinarily give out 
deviations of some points only, and not a continuous relief. 

Then a level of automation for getting complete and 
continuous information from interpherograms is required. 

 
1.2  Principles used on self calibration 

For making high accuracy flats, three pieces are lapped 
each other; if they are convex or concave, only  a pair will 
match, but not a third one. In mechanics peaks will produce 
abrasion, smoothing them. In optics peaks will interfere, 
producing patterns of fringes. In both cases the absence of 
flatness are revealed, constituting a method of self 
calibration. 

A first intent to correlate information from optical 
comparison, is supposing that geometric differences of flats 
are ready. Using the model of Bernard, these differences are 
D, E, G as in equations (1). They are produced when flats k, 
l, m are compared.  See fig. 1 and Equation 1. 

 

 
Fig. 1. Flats and axis of reference when compared. 
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These may be solved for cases with left - right symmetry, 
which occur when x = 0, according system (2). 
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But for regions x ≠ 0, equations (2) are not valid since 
D(x, y) ≠ D(-x, y); and so for E, G. 

For translating the true values obtained along the axis Y, 
Bernard rotates the m flat, and compared again with l, 
obtaining a new interpherogram F: 

),(),(),( yxFyxlyxm ROT =−+φ   (3) 

From here after, the shape of the line along axis Y ROTø of 
m is spread to l, k, which once again the information is feed-
backed to other region of m. To perform the comparison 
Zernike polynomials are normally adopted. 

Although Zernike offers useful information for optical 
applications, geometrical polynomials look friendlier for 
dimensional metrology, for mechanical correction, or for 
simulation.   

2.  MODELLING WITH B-SPLINES 

The simplest case of a b-spline is a Bezier curve which is 
shaped by Vi vertexes, throughout blending functions Bi, n, 
along a parameter u: 0. <= u <= 1, as describe by (4) [3]. 
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2.1 Useful characteristics of b-splines 
Geometric and algebraic symmetry is possible to 

perform when vertexes are arranged inversely as (5).  

)1()1( ,

0

uBVup nii
ni

−=− Σ
=

   (5) 

 If values of vectors Vi are changed in sign or in the 
order, we get mirror or symmetrical curves. Those 
characteristics of symmetry may be used to establish 
correlations with geometrical and algebraic meaning at once. 

Keeping their characteristics of symmetry, the 
polynomials may be transformed into b-splines 2nd degree as 
represented in (6). 
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If the curve has five or more vertex, and the last two 
final vertexes Vi, Vi+1, coincide with the first and second 
ones, the curve is closed and continuous. The location of 
vertexes may be periodic as in regular polygons. For twelve 
or more vertexes, the curve is closer to the circle. In this 
assumption of location, the only free parameters will be the 
high of Vi, named Zi.  
 For describing thin rings as surfaces, two sets of vertex 
will describe them with the equation (7). 
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For representing the ring in a rotated position, only one 
operation of rotation is required. If rotation coincides with 
frequency of polygons, it may be made by changing the 
order i of vertexes.  

Concentric rings modelled with (7) may model all flats. 
But collection of concentric rings modelled as wires with 
(6), may also be edited by CAD commands, to configure 
entire flats or membranes. This last procedure was adopted. 

2.2. Applying b-splines to the process 
The u variable in (6) will vary with ø in steps, for each 

segment of polygon of n vertex. 
 
The correlation of flats with rings shape is done with (8), 

where we have won polar symmetry: 
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Since the high of curves and their vertexes have linear 
relation, the equation (8) may be written as (9) if ø coincide 
with a step of the polygon. 
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Where all unknown parameters are the high Z of 
vertexes:  Zl(i), Zm(i), Zk(i): i=1 to n.  

 
Solution of (9) may be done with the recurrence (10): 
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2.1 Results of modelling and simulation 

 Figure 1 represents the process of comparing virtual 
membranes and their solution when modelled with rings. 
The D membrane is inverted top-down for comparison. Note 
that transportation to CAD is done directly, supporting 
validation.  



 
Fig. 1. Testing the process. The right yellow line represents the 

first equation of loop (10); the left represents the second one. 

3. OBTAINING VIRTUAL MEMBRANES FROM 
INTERFEROGRAMS 

The virtual membranes to be compared with (1), (8), (9) 
are not ready from the interpherometer. Some properties of 
fringes may be used to obtain them: curvature, distribution, 
levels of gray, and their likelihood with synthetic ones. 

3.1 Pre-processing. 

A general process able to interpret any interpherogram, 
must be immune to noise, variations on brightness, echoes, 
second reflections, islands and discontinuities of fringes. 
 Cameras used to catch natural scenario convert the 
power of light, ordinarily from 10 to 100 k lux, to 255 
levels. On the other hand, the periodicity of fringes lets 
assume that shadows must follow sine distribution. 
Processors for normalizing the brightness were developed. 

Although flats to be calibrated and models for 
comparison have circular aspect, pre-processing is easier to 
do on rectangular patterns than on circular.   Processors for 
bidirectional mapping from circular to rectangular were 
developed. Real interpherograms have echoes and small 
islands of noise; low pass filters to eliminate them were 
developed.  

Figure 2 shows a sequence of pre-processing. Principles 
of filtering applied to last image are both: sine variation with 
location, and global sine distribution of gray on histograms.  

Spurious shades on last picture derive from 
discontinuities of fringes or islands; and they were included 
to show the range of difficulties that appear when an 
automated process of images is intended to set up. 

 

      

        
Fig. 2. Sequence where image are colour converted, scaled, 

squared, and sine gray filtered. 

  3.1 Searching the shape with genetic algorithms.  
After interpherograms have been filtered, some 

techniques for comparing them with synthetic ones may be 
applied.  

The goodness of likelihood was established as: 
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Where: 

brreal(i, j) is the brightness of pixel i, j, corresponding to 
real image, from 0 to 255. 

brsynt(i, j) is the brightness of pixel i, j, corresponding to 
synthetic image. 

i, j  are the sub indices corresponding to location of  each 
pixel in the array. 

 Following genetic techniques, a population of two 
hundred b-splines (meshes with 49*49 knots) was modified 
along many hundred of generations. 

If Goodness reaches 190, the convergence becomes 
faster, reaching 220 – 250. When Goodness of a mesh is 
near to 200, it looks as the second in fig. 3.   

 
It is important to appoint that linear variations of shape 

produce periodic variations on the pattern; then the matting 
between good individuals but different among them has not 
sense. In this application of genetic techniques, the 
evolution produced better results than the mating. 



   
Fig. 3. Synthetic interpherograms where genetic techniques 

have converged. 

3.2 Surveying on surfaces. 

After square-circular conversion is made, it is possible to 
survey along rings, applying the correlation (12)  
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 But each function sine-1(gray) has two values of angle, 
on depending on direction where brightness increases. 
 

More cases of ambiguity are: (a) when a point of 
inflection occurs in full dark or full light fringes, (b) when 
local small spurious shades appear, (c) when the level of 
gray does not follow a sine distribution. 

 
 Hypothesis of inflection are established, and confirmed 
through the likelihood with adjacent rings. See fig. 5. 

    

Fig. 5.  Adjacent rings show probable inflection areas, where 
darkness or brightness didn’t reach a minimum or maximum. 

The level of success when gray is interpreted as high, 
was better than 90% for synthetic images; and 50% for real. 

4. CONCLUSIONS 

The simplification proposed with b-spines, did easier the 
tasks of comparison, offering CAD alternatives for 
validation. 

We appreciate that tools developed for interpreting 
interpherograms discussed here in, are useful for many 
applications based on images with noise, where sine-1 
correlations have to be applied.  
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