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Abstract − In the paper, the two non-parametric 

algorithms for the period estimation are compared: the 
autocorrelation approach and the interpolated discrete 
Fourier transform (IDFT) approach both added with 
algorithm for searching of the lowest common frequency 
component or the largest period of the modulated signal. 
The direct approach by IDFT shows better results at two and 
more cycles of the investigated period in the measurement 
interval. Simulation results also show the robustness of the 
searching algorithm of the lowest common frequency 
component. 
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1.  INTRODUCTION 

Estimations of the periodic signal parameters, where 
period/frequency of the investigated component is the key 
parameter, are very important in many measurement 
applications where we are looking for frequency response 
functions. Many approaches are reported in literature for the 
period measurement of digitised signals [1]-[6]. In most of 
them, a first analysis gives a rough estimation of the period, 
while a further algorithm improves the measurement 
accuracy [3]-[6]. The first step has the non-parametric 
estimation nature and it is important for the successive 
signal processing procedure. 

One possibility in the first step is the level crossing 
approach [1],[2]. This method evaluates the period of 
sampled signal by means of the time distance between two 
consecutive crossings of a trigger level (usually zero) with 
the same slope and it is a method adopted by most of the 
scopes. The zero-crossing methods require a very low 
computational burden, but they are not applicable to signals 
with more than one zero crossing for the period, and their 
accuracy depend on the signal-to-noise ratio. Even though 
they are based on an interesting approach, we know that 
these algorithms all fail in the period measurement of the 
modulated signal. Most oscilloscopes fail completely in the 
period measurement of the frequency modulated (FM) and 
the amplitude modulated (AM) signals. 

As regards the autocorrelation function, it requires more 
processing power than the zero-crossing one and is more 
robust and general. The literature [3] proposed to precede a 
zero-crossing interpolated method with an algorithm based 
on the autocorrelation; a normalisation function is also 
suggested to compensate the edge effect owing to the 
limited time window. The basic idea is to detect the distance 

between successive peaks. If a wide band signal with a flat 
amplitude spectrum is analysed, this simple method gives a 
good estimation. It fails in practice, however, for a number 
of special cases [4]. 

Since we are looking for the periodicity of the signal for 
which energy is essentially concentrated around some 
frequency origins, it is very suitable to use the frequency 
domain approach. Fourier transformation is in principle the 
best approximation to periodicity in the signal [7]-[11], with 
some restrictions. A finite time of measurement is a source 
of dynamic errors, which are shown as leakage parts of the 
measurement window spectrum convolved on the spectrum 
of the measured (sampled) signal. Tones of the sampled 
signal do not generally coincide with the basic set of the 
periodic components of the discrete Fourier transformation 
(DFT). The position, i.e. the frequency/period of the 
measurement component, can be estimated by means of the 
interpolated DFT [11]. This is a non-parametric frequency 
domain approach. 

In this paper, the two non-parametric algorithms for the 
period estimation are compared: by the autocorrelation and 
by the IDFT, both added with algorithm for searching of the 
lowest common frequency component or the largest period 
of the modulated signals (FM, AM, etc. [12]).   

2.  NON-PARAMETRIC PERIOD ESTIMATION 

There are generally three steps associated with the digital 
processing of the periodical signal with period xT . First, the 

signal ( )xTtg  is uniformly sampled ( tf ∆= 1s  - sampling 

frequency) and quantised into a discrete sequence 
( )xTtkg ∆ . Then, a block of data ( 1,...,1,0 −= Nk ) with 

suitable weights ( )kw  is constructed by looking at the 

sequence for a period of time, which should be as close as 
possible to the integer values of the investigated periodicity. 
This period of time MT  is referred to as the data window 

( )kw  or observation interval and it is suitable for 

normalising the time-dependent parameters with the 
measurement time tNT ∆=M  or in the frequency domain 

with the frequency resolution M/1 Tf =∆ : 
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There are some requirements associated with the first 
two steps. First of all, the sampling frequency must be at 
least twice as high as the highest frequency of interest 
(practically 2,5 times higher). In the same vein, the 
measurement time should be long enough to resolve two 
components. Using a basic rectangular window shape and 
the non-parametric resolution approach, the measurement 
time should be at least around one period. 

To analyse the signal in the frequency domain, the DFT 
can be applied to the samples within the data window. The 
DFT at the spectral line i  of the multi-component m signal 

 ( ) ( )∑ +=∆
m mmmN NkAtkg ϕθπ2sin   (2) 

where mA , mmmm iff δθ +=∆= , and mϕ  are the 

amplitude, the normalised frequency and the phase of the 
particular harmonic or non-harmonic component in the 
signal, respectively, is given by 

 ( ) ( )[ ]∑ −+−−−=
m

j
m

j
mm

mm eiWeiWA
j

iG ϕϕ θθ
2

)(  (3) 

( )∗W  is a spectrum of the window function ( )kw . The 

displacement term mδ  is owed to the non-coherent sampling 

around the integer values mi  ( 5.05.0 ≤<− mδ ) and can be 

estimated by means of the interpolated DFT [11].   
One of the most generally used non-parametric 

approaches to estimate the periodicity in the time domain is 
the autocorrelation function. The autocorrelation ( )τR  of a 

waveform gives an indication of similarity of the waveform 
with its time-shifted τ  version 
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( )τR  is periodic with the same period as ( )tg . The 

largest value is at 0=τ  ( ) ( )τRR ≥0  [13], that is, ( )τR  has 

its largest magnitude at xx TT 2,,0 ±±=τ  etc. (Fig. 1), at 

which points it is equal to the average power in ( )tg . The 

Fourier coefficients of ( )τR  are equal ( )2
iG  (Fig. 2). 

In the discrete version on the N  samples, the 
autocorrelation function is calculated as 

 ( ) ( ) ( )∑
−

=

+=
1

0

1 N

m

nmgmg
N

nR ,    ( ) 11 −<<−− NnN   (5) 

The autocorrelation function duration is almost twice as 
wide as the duration of the input signal ( 12 −N ) and the 
point 0=τ  corresponds to the middle of the span (Fig. 1). 

3.  PERIOD ESTIMATION 

A. Frequency modulation 

To find the period of the modulated signal, the FM 
signal was used with frequency sweep from 1 to 10 cycles in 
the common period and 2,2 cycles of this period in the 
measurement interval (Fig. 1: 2,2=xθ ). 
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Fig. 1. Frequency modulated signal ( )tg  (a) and its normalised 

autocorrelation function ( ) ( ) ( )maxnorm τττ RRR =  (b); 2,2=xθ  

To find the periodicity of the investigated signal and its 
autocorrelation function the frequency domain approach has 
been adopted. Since we are looking for the period of the 
significant component, the largest amplitude DFT 
coefficients have to be searched (Fig. 2: at the dotted lines).  
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Fig. 2. Spectra of the frequency modulated signal ( )tg  (a) and its 

normalised autocorrelation function ( )normτR (b) 

The effect of the non-coherency for this local component 
can be reduced by the interpolation of the DFT coefficients. 
It has been shown [11] that the best estimation results in 
reducing long leakage effects gives the three-point 
estimation using the Hann window. In the estimation of the 
particular component m, the three largest local DFT 
coefficients ( )1−miG , ( )miG , and ( )1+miG  are used for 

the frequency estimation. 
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Since we are looking for the lowest common frequency, 
the interval from the zero to the estimated frequency of the 
largest component has to be investigated. There could be 
lower periodic peaks at positions with integer divisors of the 
position of the largest one. Again, the DFT of the waveform 
of the amplitude spectrum from zero to the maximal peak 
can be used to estimate this period (Fig. 3). 
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Fig. 3. Spectra of the amplitude spectra waveforms in the intervals 
from zero to the maximum peak at dotted lines in Fig. 2: a - signal 

( )tg ; b - autocorrelation function ( )normτR  

If there is any lower significant frequency component, 
the amplitude DFT spectrum shows a peak different from 
the zero DC component and with the value of the frequency 
of this peak (Fig. 3: in our case ( ) 5

max
=Gj , ffj ∆= ) 

and the estimated frequency of the previous step should be 
divided: 
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To show the effectiveness of the proposed algorithm 
with advanced searching of the lowest common frequency 
component for both non-parametric approaches of the period 
estimation (a - by the IDFT of the signal and b - by the 
IDFT of the signal autocorrelation function), the maximal 
values of errors were searched with double scan (Fig. 4: 

1024=N ; 101 sweep ≤≤ θ , 61 x ≤≤ θ  and at each frequency 

the phase angle has been changed 22 πϕπ ≤≤− , 

18πϕ =∆ ). The systematic errors of the frequency 

estimations trueest θθ −=E ( trueθ  is the true value of the 

frequency) are phase-dependent. ϕ  is the phase of the first 

cycle in the sweep.  
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Fig. 4.   Absolute maximal errors of the period estimations of the 

frequency modulated signal (a) and its autocorrelation function (b)  

Between one and two cycles in the measurement interval 
( 21 x ≤≤ θ ) the approach with the autocorrelation function 

gives better results. Above two cycles, the direct approach 
with IDFT only shows lower errors since the frequency 
resolution interval condition θ∆≤2  of the used Hann 
window in the interpolation is satisfied [11]. 

The same behaviour can be noticed with added noise to 
the signal from Fig. 1 at the level of 10 per cent (Fig. 5). The 
standard deviation level is lower with the autocorrelation 
function (Fig. 6).   
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Fig. 5. Absolute maximal errors of the period estimations of the 

frequency modulated signal (a) and its autocorrelation function (b); 
0=ϕ ; 1,0noise =AA ; 100 iterations at each frequency 61 x ≤≤ θ  
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Fig. 6. Standard deviations of the period estimations of the 

frequency modulated signal (a) and its autocorrelation function (b); 
0=ϕ ; 1,0noise =AA ; 100 iterations at each frequency xθ  

The experimental validation of the non-parametric 
frequency estimations of the FM signals confirms the above 
conclusions. In the experimental set-up, a signal generator 
(Agilent 33220A) and digital storage oscilloscope (HP 
54600) were used. The linearly changing sweep signal 
generated had the constant sweep time ms40sweep =t  with 

the start and the stop frequency Hz100start =f  and 

kHz1stop =f . On the DSO, the time base range was changed 

from ms100min =T to ms240max =T  in steps of ms4=∆T . 

The relative frequency was changed from 
5,2ms40ms100min ==θ  to 6ms40ms240min ==θ , 

respectively. The maximal errors on the 30 trials with 
random initial phases at each frequency were around 

( ) 1,0
max

≈θE  (Fig. 7). 
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Fig. 7. Absolute maximal errors of the period estimations of the 

frequency modulated signal (a) and its autocorrelation function (b); 
V1=A , ϕ - random; 30 iterations at each frequency 65,2 x ≤≤ θ  

B. Amplitude modulation 

The amplitude spectra of the AM signals show the 
reduction of a number of the significant components. The 
carrier signal with the frequency 1θ  has the amplitude 

modulation with the lower frequency 2θ  (an example: eq. 

(8) and Fig. 8) and the spectrum shows at least two peaks at 

21 θθ −  and 21 θθ +  but generally three peaks if there is the 

DC component in the AM signal (Fig. 9). 

 ( ) )π2sin())π2sin(5,05,0( 1122 ϕθϕθ +⋅++= tttg  (8) 
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Fig. 8. Amplitude modulated signal ( )tg  (a) and its normalised 

autocorrelation function ( ) ( ) ( )maxnorm τττ RRR = (b); 1024=N ; 

101 =θ , 2,22 =θ ; 01 =ϕ , 02 =ϕ  

To find the period of the AM signal, one has to estimate 
the frequency difference between the two components’ 
peaks, as was the case with FM. The procedure requires the 
estimation of the frequencies of the two largest peaks by (6) 
in the investigated interval from the zero frequency to the 
maximal spectrum peak (Fig. 9.). 
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Fig. 9. Spectra of the amplitude modulated signal ( )tg  (a) and its 

normalised autocorrelation function ( )normτR (b) 

To analyse the effectiveness of the proposed algorithm 
for both non-parametric approaches of the period estimation 
(a - by the IDFT of the signal and b - by the IDFT of the 
signal autocorrelation function) the maximal values of errors 
were searched with double scan (Fig. 10: 1024=N ; 

101 =θ ; 101 2 ≤≤ θ  and at each AM frequency the phase 

angle was changed 2π2π
2 ≤≤− ϕ , 182 πϕ =∆ ). 
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Fig. 10. Absolute maximal errors of the period estimations of the 
amplitude modulated signal (a) and its autocorrelation function (b) 

101 =θ , 101 2 ≤≤ θ , 2π2π
2 ≤≤− ϕ  
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Fig. 11. Standard deviations of the period estimations of the AM 
signal (a) and its autocorrelation function (b); 0=ϕ ; 

1,0noise =AA ; 100 iterations at each frequency 2θ  

 



Above two and a half cycles, the direct approach with 
IDFT gives lower errors. This procedure shows worse 
results when the frequency distance drops under the two 
cycles 2<∆θ  owing to the width of the Hann window 
spectrum main-lobe.  

When we add the noise to the signal from Fig. 10 at the 
level of 10 per cent, the autocorrelation function gives lower 
values of the standard deviations (Fig. 11). 

C. Signal with one zero crossing per period 

The proposed algorithms were also tested by the 
triangular shape signal as a representative signal with one 
zero crossing per period where the largest DFT coefficient is 
the first in the row of the signal harmonics and there is no 
significant lower frequency component between zero and 
the largest DFT coefficient. In this case, the direct approach 
with IDFT only gives better results (lower systematic errors) 
even at lower frequencies x5,1 θ≤  (Fig. 12: errors were 

searched with double scan ( 1024=N ; 61 x ≤≤ θ  and at 

each frequency 22 πϕπ ≤≤− , 18πϕ =∆ ). 
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Fig. 12. Absolute maximal errors of the period estimations of the 

triangular signal (a) and its autocorrelation function (b) 
0noise =AA  
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Fig. 13. Absolute maximal errors of the period estimations of the 
triangular signal (a) and its autocorrelation function (b); 0=ϕ ; 

1,0noise =AA ; 100 iterations at each frequency xθ  

The same behaviour can be noticed with added noise to 
the triangular signal at the level of 10 per cent (Fig. 13 and 
Fig. 14). The standard deviation level of the autocorrelation 
approach is about four times lower than the direct approach 
by IDFT only.   
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Fig. 14. Standard deviations of the period estimations of the 

triangular signal (a) and its autocorrelation function (b); 0=ϕ ; 

1,0noise =AA ; 100 iterations at each frequency 

4. CONCLUSIONS 

In the paper, the two non-parametric algorithms for the 
period estimation are compared: by the autocorrelation and 
by the IDFT both added with algorithm for searching of the 
lowest common frequency component or the largest period 
of the modulated signals. The direct approach by IDFT only 
shows better results (lower systematic errors) at two and 
more cycles of the investigated period in the measurement 
interval. Between one and two cycles in the measurement 
interval the approach with the autocorrelation function gives 
better results.  
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