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Abstract — In the paper, the two non-parametric between successive peaks. If a wide band signal avitat

algorithms for the period estimation are compardte

amplitude spectrum is analysed, this simple metjivds a

autocorrelation approach and the interpolated efscr good estimation. It fails in practice, however, fonumber
Fourier transform (IDFT) approach both added withof special cases [4].

algorithm for searching of the lowest common fretpye
component or the largest period of the modulateghagi
The direct approach by IDFT shows better resultsvatand
more cycles of the investigated period in the mesment
interval. Simulation results also show the robustnef the

Since we are looking for the periodicity of thersgfor
which energy is essentially concentrated around esom
frequency origins, it is very suitable to use theqtiency
domain approach. Fourier transformation is in pplecthe
best approximation to periodicity in the signal-[T1], with

searching algorithm of the lowest common frequencyome restrictions. A finite time of measuremend isource

component.

Keywords. period estimation, non-parametric approach

autocorrelation, IDFT

1. INTRODUCTION

of dynamic errors, which are shown as leakage mdrthe
measurement window spectrum convolved on the spactr
of the measured (sampled) signal. Tones of the kamp
signal do not generally coincide with the basic akthe
periodic components of the discrete Fourier tramsé&tion
(DFT). The position, i.e. the frequency/period difet

Estimations of the periodic signal parameters, whermeasurement component, can be estimated by medhe of

period/frequency of the investigated componenthes key

interpolated DFT[11]. This is a non-parametric frequency

parameter, are very important in many measuremegiomain approach.

applications where we are looking for frequencypoese
functions. Many approaches are reported in liteedtr the
period measurement of digitised signals [1]-[6].nhost of
them, a first analysis gives a rough estimatiothefperiod,

In this paper, the two non-parametric algorithmstfee
period estimation are compared: by the autocoroglaand
by the IDFT, both added with algorithm for searchof the
lowest common frequency component or the largesbge

while a further algorithm improves the measuremenbfthe modulated signals (FM, AM, efd.2)).

accuracy [3]-[6]. The first step has the non-paraime
estimation nature and it is important for the sssoe
signal processing procedure.

One possibility in the first step is the level @ing
approach [1],[2]. This method evaluates the perifd
sampled signal by means of the time distance betwse
consecutive crossings of a trigger level (usuadyoy with
the same slope and it is a method adopted by nfatsteo

2. NON-PARAMETRIC PERIOD ESTIMATION

There are generally three steps associated witHigfiial
processing of the periodical signal with peridd. First, the

signal g(t/Tx) is uniformly sampled ¢, =1/At - sampling
frequency) and quantised

scopes. The zero-crossing methods require a veny lo 9(kAY/T,). Then, a block of datak(= OL...,N -1) with

computational burden, but they are not applicablsignals
with more than one zero crossing for the period dreir
accuracy depend on the signal-to-noise ratio. BEhengh
they are based on an interesting approach, we khatv
these algorithms all fail in the period measurementhe
modulated signal. Most oscilloscopes fail compieial the
period measurement of the frequency modulated (&iv)
the amplitude modulated (AM) signals.

As regards the autocorrelation function, it reggiingore
processing power than the zero-crossing one andoi®
robust and general. The literature [3] proposegrazede a
zero-crossing interpolated method with an algorithased
on the autocorrelation; a normalisation function aiso
suggested to compensate the edge effect owing ¢o
limited time window. The basic idea is to deted tlistance
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suitable Weightsw(k) is constructed by looking at the

sequence for a period of time, which should belasecas
possible to the integer values of the investigatedodicity.
This period of timeT,, is referred to as the data window

wk) or observation interval and it is suitable for

normalising the time-dependent parameters with the
measurement timél,, = NAt or in the frequency domain

with the frequency resolutioA f =1/T,, :

At)_ (At
et = o 3
N (1)

T, k)_ (f k k
g[TX N] g[Af N] g(*Nj
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into a discrete sequence



There are some requirements associated with tse fir “g(t)
two steps. First of all, the sampling frequency trioes at 3
least twice as high as the highest frequency ofrést
(practically 2,5 times higher). In the same veihet
measurement time should be long enough to resehee t
components. Using a basic rectangular window stzaqme
the non-parametric resolution approach, the measme 0 Ak i ettt ‘
time should be at least around one period. UWJ\22 4 t/Tx,O

To analyse the signal in the frequency domain,OR&
can be applied to the samples within the data windiche
DFT at the spectral liné of the multi-componern signal -1+

glkat), =3 A,sin(2r6,k/N +¢,) 2)
Fig. 1. Frequency modulated signﬂt) (a) and its normalised

where A, ¢,=f /Af =i +J,, and ¢, are the autocorrelation functiorR(r),,..., = R(r)/R(r),.. (b); 6, = 2.2
amplitude, the normalised frequency and the phase of the
particular harmonic or non-harmonic component in the To find the periodicity of the investigated sigrmaild its
signal, respectively, is given by autocorrelation function the frequency domain apphohas

; . . been adopted. Since we are looking for the peribthe

Gliy=-1% Anblv(i -6, )e" -W(| +49m)e"¢m] (3) significant component, the largest amplitude DFT
2%y coefficients have to be searched (Fig. 2: at thteddines).

norm

w(D is a spectrum of the window function(k). The
displacement ternd,, is owed to the non-coherent sampling |G(f]
around the integer valudg (-05<J, < 05) and can be 1y a

estimated by means of the interpolated DET]. 1

One of the most generally used non-parametric 107 |
approaches to estimate the periodicity in the tifomain is
the autocorrelation function. The autocorrelatia(r) of a

waveform gives an indication of similarity of theaveform 144 |
with its time-shiftedz version

T

t)g(t+7)dt 4 N S U S
o)glt+r) @ 0 20 40 60 80 f/nf

R(r) is periodic with the same period agt). The  F19-2 Spec”"’:_c’f;he frequen;:y.mofdulatzi( 5')93(&) b(a) and its
normalised autocorrelation functi T
largest value is ar = (R(O)2|R(r)| [13], that is, R(r) has nom (0)

its largest magnitude at =0, +T,, +2T, etc. (Fig. 1), at The effect of the non-coherency for this local comgnt

which points it is equal to the average powergift). The can be reduced by the interpolation of the DFT fociefits.
It has been shown [11] that the best estimationlt®sn

. . . . \12 .
Fourier coefficients oR(r) are equalG(i)" (Fig. 2). reducing long leakage effects gives the three-point
In the discrete version on theN samples, the estimation using the Hann window. In the estimatidrihe

autocorrelation function is calculated as particular componentm, the three largest local DFT
1N coefficients |G(i,, ~ 1), |G(i,,). and [G(i,, +1) are used for
R(n) =WZg(m)g(m+ n), =(N-)<n<N-1 (5) the frequency estimation.
m=0

The autocorrelation function duration is almostcevas 5 02— (i +1) _.|G(im _1)|
wide as the duration of the input sign@N - ) and the Gli, 1)+ 2G(i .} +[Gli, +1)
point 7 = 0 corresponds to the middle of the span (Fig. 1).

R(r)=

O 3z

1
TM

(6)

Since we are looking for the lowest common freqyenc
the interval from the zero to the estimated freqyeof the
largest component has to be investigated. Therdd dos
A. Frequency modulation Iow_e( periodic peaks at positiong with integer slivs of the

| ] ) ) position of the largest one. Again, the DFT of theveform

To find the period of the modulated signal, the FMof the amplitude spectrum from zero to the maxipehk
signal was used with frequency sweep from 1 toyllles in can be used to estimate this period (Fig. 3).
the common period and 2,2 cycles of this periodthe
measurement interval (Fig. 8 = 32

3. PERIOD ESTIMATION
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IG(f)| gives better results. Above two cycles, the digmbroach
with IDFT only shows lower errors since the fregeyen
resolution interval condition2<A@ of the used Hann

107 ¢ window in the interpolation is satisfied [11].

i The same behaviour can be noticed with added rioise
the signal from Fig. 1 at the level of 10 per d&fig. 5). The
standard deviation level is lower with the autoetation
function (Fig. 6).

I ).,

0 2 4 6 8 /0f

Fig. 3. Spectra of the amplitude spectra wavefdmtke intervals
from zero to the maximum peak at dotted lines o Bi a - signal
g(t); b - autocorrelation functiorR(r)

norm

1021
If there is any lower significant frequency compone i
the amplitude DFT spectrum shows a peak differemnf 3
the zero DC component and with the value of thgueacy 104 |
of this peak (Fig. 3: in our casq'e(]G|max):5, j=f/Af) T L A T
and the estimated frequency of the previous step should bq:ig_ 5. Absolute maximal errors of the period estioms of the
divided: frequency modulated signal (a) and its autocoiimeidunction (b);
i +0 1 $=0; A,./A=01; 100 iterations at each frequenty 8, <6
fx :uAf — Tx :f_ (7)
X A S(H)
To show the effectiveness of the proposed algorithm
with advanced searching of the lowest common fraque
component for both non-parametric approaches gbénied 1 L
estimation (a - by the IDFT of the signal and by-the a
IDFT of the signal autocorrelation function), theaximal 1L e
values of errors were searched with double scag. (i b
N =1024; 1<86,,,,,<10, 1< 6, <6 and at each frequency 107 | JH M | |
the phase angle has been changedr/2<¢<r/2, g I L Ry e
A _p g ' gedr/2< ¢ < b l‘ lr | ml ‘\},Iumm.hh'”m”f" |l‘_.|“]~f‘|!|‘
¢ =7m/18). The systematic errors of the frequency g ' il \
estimations E=6,,,-6,,.(6,. is the true value of the A0 P Y U S SR SRR RUUDY U S
1 2 3 4 5 6 6

frequency) are phase-dependegit.is the phase of the first
cycle in the sweep.

[ E6)...

Fig. 6. Standard deviations of the period estinmstiof the
frequency modulated signal (a) and its autocoiimdtnction (b);
$=0; A,./A=01; 100 iterations at each frequenéy

The experimental validation of the non-parametric
frequency estimations of the FM signals confirnes ébbove
conclusions. In the experimental set-up, a sigralegator
(Agilent 33220A) and digital storage oscilloscopiP(
54600) were used. The linearly changing sweep kigna

b generated had the constant sweep tiye,,=40  with
107 4 the start and the stop frequency,,, =100 Hand
Ml MM\W’WL‘M“ fyop =1kHz. On the DSO, the time base range was changed
AL
4 5 6 6

from T, =100msto T, =240ms in steps ofAT =4ms.

The relative frequency  was changed from
7

min

10|

w * \’ " MWJ ww\lp

Fig. 4. Absolute maximal errors of the periodraations of the
frequency modulated signal (a) and its autocorimlgtinction (b)

=100ms/40ms=25 to 6,, =240ms/40ms=6,

respectively. The maximal errors on the 30 trialghw
random initial phases at each frequency were around

Between one and two cycles in the measuremenvaiter |E(5’)|max =01 (Fig. 7).
(1= 6, < 2) the approach with the autocorrelation function
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Fig. 7. Absolute maximal errors of the period estions of the ! ' ! 1 >
frequency modulated signal (a) and its autocolimigunction (b); 0 10 20 30 f /Af
A=1V, ¢-random; 30 iterations at each frequery= 6, <6 Fig. 9. Spectra of the amplitude modulated sigy(a) (a) and its

normalised autocorrelation functidﬂ(r)mrm (b)
B. Amplitude modulation
The amplitude spectra of the AM signals show the To analyse the effectiveness of the proposed dlgori
reduction of a number of the significant componefiise  for both non-parametric approaches of the periicheion
carrier signal with the frequency, has the amplitude (a - by the IDFT of the signal and b - by the IDBffthe

modulation with the lower frequencﬁz (an example: eq. signal autocorrelation fUﬂCtiOﬂ) the maximal valoégrrors

(8) and Fig. 8) and the spectrum shows at leastieks at Were searched with double scan (Fig. 1= 1024
6,-6, and 8,+6, but generally three peaks if there is the % =10; 1=6, <10 and at each AM frequency the phase
DC component in the AM signal (Fig. 9). angle was changedn/2< ¢, <n/2, Ap, = 17/18).
g(t)= (05+ 05sin@nb,t +¢,)) BinRrbt +¢,)  (8) ' )
Ag(t) max
14
1

107

10 : : ! ‘ : ‘ | = : >
1 2 4 6 8 10 6,

-1
) ) ) ) ) Fig. 10. Absolute maximal errors of the periodreations of the
Fig. 8. Amplitude modulated signg(t) (a) and its normalised amplitude modulated signal (a) and its autocorieidtnction (b)

autocorrelation functiorR(r)norm = R(r)/ R(r)max (b); N =1024; 6,=10, 1<6,<10,-n/2< ¢, <n/2
6,=10, 6,=22; ¢,=0, ¢,=0

A
To find the period of the AM signal, one has to estimate 5(9)
the frequency difference between the two components’ T
peaks, as was the case with FM. The procedure requires the |
estimation of the frequencies of the two largest peaks by (6) a

in the investigated interval from the zero frequency to the ;= TNWMWW
maximal spectrum peak (Fig. 9.). WWWWW
I b

1
f, =|6,-6,|nf =AM - T, =— 9) i
e 1071 : + ; : t ‘ + ; : >
1 2 4 6 8 10 6,
Fig. 11. Standard deviations of the period estiomatiof the AM
signal (a) and its autocorrelation function ()= 0 ;

Ao/ A= 01; 100 iterations at each frequen8y
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Above two and a half cycles, the direct approacth wi

The same behaviour can be noticed with added noise to

IDFT gives lower errors. This procedure shows worsehe triangular signal at the level of 10 per cent (Fig. 13 and

results when the frequency distance drops underttioe
cycles A6<2 owing to the width of the Hann window
spectrum main-lobe.

Fig. 14). The standard deviation level of the autocorrelation
approach is about four times lower than the direct approach
by IDFT only.

When we add the noise to the signal from Fig. 10 at the

level of 10 per cent, the autocorrelation function giveslow
values of the standard deviations (Fig. 11).

C. Signal with one zero crossing per period
The proposed algorithms were also tested by th

s6)

e

triangular shape signal as a representative signal with or - i a

zero crossing per period where the largest DFT coefficient
the first in the row of the signal harmonics and thereois n
significant lower frequency component between zero an

Io WWMW—WM—MWMW

d - b

the largest DFT coefficient. In this case, the direct approac 10™ I T N

with IDFT only gives better results (lower systematic esyo
even at lower frequencied5<6, (Fig. 12: errors were

searched with double scarN(= 1024<4, <6 and at
each frequency-77/2< ¢ < 77/2, Ag = 17/18).

E©)...

1 2 3 4 5 6 0
Fig. 12. Absolute maximal errors of the periodreations of the
triangular signal (a) and its autocorrelation fumc(b)

A)oise/A =0

E©)...

107 L

w0

v

Fig. 13. Absolute maximal errors of the periodreations of the
triangular signal (a) and its autocorrelation fumeib); ¢ =0 ;

Ao/ A=01; 100 iterations at each frequenéy
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1 2 3 4 5 6 6

Fig. 14. Standard deviations of the period estiomatiof the
triangular signal (a) and its autocorrelation fumetb); ¢ =0;

Ao/ A=01; 100 iterations at each frequency

4. CONCLUSIONS

In the paper, the two non-parametric algorithms for the
period estimation are compared: by the autocorrelation and
by the IDFT both added with algorithm for searching of the
lowest common frequency component or the largest period
of the modulated signals. The direct approach by IDFT only
shows better results (lower systematic errors) at two and
more cycles of the investigated period in the measurement
interval. Between one and two cycles in the measurement
interval the approach with the autocorrelation function gjive
better results.
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