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Abstract  In this paper a new estimator for the 

measurement of the rms value of a noncoherent sampled 
sine-wave is proposed. The key feature of this estimator is 
that the sine-wave offset, a priori estimated, is removed 
from the sine-wave. A formula used to estimate the sine-
wave offset is also given in the paper. It has been proved by 
means of computer simulations and experimental results that 
by the proposed estimator accurate rms measurements are 
obtained if the total harmonic distortion (THD) of the sine-
wave is smaller than or equal to 30 dB.      

Keywords: sine-wave rms estimation, noncoherent 
sampling mode, windowing. 

1.  INTRODUCTION 

In many engineering applications, it is very important to 
know with high accuracy the rms value of a sine-wave 
because it related directly to its power. In digital 
measurements, the sine-wave is often sampled in 
noncoherent way (noncoherent sampling mode). Different 
methods have been proposed in scientific literature to 
measure the rms value of a sine-wave in this case. These 
methods can be classified either in time-domain methods 
[1]-[2] or in frequency-domain methods [3]-[8]. In [2] the 
rms value of a noncoherent sampled sine-wave is calculated 
by the formula used in an AC analog electronic voltmeter. 
For this purpose first the rectified mean value of the sine-
wave is calculated and then the result obtained is multiplied 
by the factor form for a sine-wave. To increase the 
measurement accuracy the sine-wave is a priori multiplied 
by the sequence of a cosine window. The estimator 
proposed in [2] is based on a low complexity algorithm and 
it is the most simple to implement and so, the faster. In [2] it 
has been proved by means of computer simulations and 
experimental results that for a free offset and high spectral 
purity sine-wave the measurements obtained using this 
estimator are relatively high accurate. The sine-waves often 
encountered in practice have an offset and a spectral purity 
not so high. Unfortunately, these situations have not been 
analyzed in [2].   

In this paper first the influence of the offset and 
harmonic components of a sine-wave on the accuracy of the 
rms value measurement obtained using the estimator 

proposed in [2] is analyzed. From this analysis a new 
estimator for the measurement of the rms value of a sine-
wave with offset and harmonic components is proposed. The 
efficiency of this estimator is analyzed by means of 
computer simulations and experimental results as well.    

2.  PROPOSED ESTIMATOR FOR RMS VALUE 
MEASUREMENT  

Let us consider a sine-wave x(t) of amplitude A, 
frequency f (equal to 1/T), phase , and offset d, with K 
harmonic components. The kth harmonic component is 
characterized by their amplitude Ak, frequency fk (equal to 
kf), and phase k. It is assumed that the noise of x(t) is 
smaller than the offset and harmonic components. The 
signal x(t) is sampled at the frequency fs (equal to 1/Ts) and 
M samples are acquired. Thus, the following discrete-time 
signal is obtained: 
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The ratio between the frequencies f and fs is:  
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where J and  are respectively the integer part and the 
fractional part of the number of acquired sine-wave cycles, 
and 0.5   < 0.5. When  = 0 the sampling process is 
coherent with the input sine-wave (coherent sampling 
mode). Conversely, the noncoherent sampling mode is 
characterized by   0. The latter mode is very common in 
practical applications. 
 The estimator proposed in [2] to measure the rms value 
of x(·), Xrms, is given by: 
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where w(·) is a window sequence, Kf is the form factor 
( 22/fK ), and NPSG is the window normalized peak 
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The sine-wave x(·) is multiplied by w(·) in order to reduce 
the bias of the rms value determined by the part of signal 
period T at the end of (J + )T. By this multiplication the 
signal xw(m) = x(m)·w(m) is obtained.  

The cosine windows are used in the estimator rmsX̂ . It 
should be noted that for these windows NPSG is equal to the 
first window coefficient, a0. 

In [2] it has been proved by means of computer 
simulations and experimental results that for d = 0 and small 
total harmonic distortion (THD), Xrms is estimated with 
relative high accuracy by rmsX̂ . 

In the following the case in which d  0 and THD has an 
important value is investigated. Since the expression 
of rmsX̂ contains the modulus of xw(·) the relative error of 
Xrms, , is smaller than a upper limit, lim. For  = 0 this 
upper limit is given by (see (A.13) from Appendix): 
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where Xrmsi is the theoretical value of Xrms ( 2/AX rmsi  ) 
and Xrmski is the theoretical value of rms value of the kth 
harmonic component ( 2/krmski AX  ). 

For   0 the expression of the upper limit it is very 
difficult to obtain and it will therefore not be derived.  

From (4) it is obvious that the accuracy of the Xrms 
measurement increases as d and Ak (k = 2, 3,..., K) decrease. 
Thus, the best solution to obtain an accurate Xrms 
measurement is to remove the offset and the harmonic 
components from x(·). In order to remove the harmonic 
components it is necessarily to estimate each harmonic 
component parameters. This task is too complex and 
increases the complexity of the measurement of Xrms and 
therefore, it will not be made. On the other hand, d can be 
estimated by: 

  
 

NPSGM

mx

NPSGM
Xd

M

m
w

w












1

00ˆ  (5) 

where Xw(0) is the first component (DC component) of the 
discrete Fourier transform (DFT) of xw(·). 

Thus, to increases the accuracy of the Xrms measurement, 
d̂ is a priori removed from x(·) and Xrms is estimated by: 
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3.  SIMULATION AND EXPERIMENTAL RESULTS 

The aim of this section is to determine the efficiency of 
the estimator rmsX~ by means of computer simulation and 
experimental results.  

3.1. Simulation results 
Fig. 1 shows the maximum of the modulus of , ||max, as 

a function of  and d (Fig. 1a),  and THD (Fig. 1b), and d 
and THD (Fig. 1c).   
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Fig. 1. ||max as a function of: (a)  and d, (b)  and THD,              
(c) d and THD. 



The modelled x(·) is characterized by: A = 1 V, J = 11 
and M = 1024. The sine-wave has the 2nd and 3rd harmonic 
components of amplitude A2 and A3 = A2/2. The phases of 
the sine-wave and harmonic components are uniformly 
distributed on [0, 2) rad. The Hann window is used.  

In Figs. 1a and 1b,  varies in the range [0.5, 0.5) with 
a step of 1/40 and in Fig. 1c,  = 0.2. In Figs. 1b and 1c, 
THD varies in the range [80, 20] dB with a step of 5 dB 
and in Fig. 1a, THD = 50 dB. In Figs. 1a and 1c, d varies in 
the range [0, 100] mV with a step of 5 mV, and in Fig. 1b,   
d = 50 mV. The signal is applied to an ideal digitizer with a 
14-bit bipolar analog-to-digital converter (ADC). The full-
scale range (FSR) of the ADC is equal to 5 V. Thus, the 
quantization noise of the ADC is the only noise which 
affects the sine-wave. This is modelled by a uniform 
additive noise. For each  and d (Fig. 1a),  and THD (Fig. 
1b), and d and THD (Fig. 1c), ||max occurring during the 
phases variation is retained. Each time 100 runs are done. 

As expected, the variation of d does not affect very much 
the estimation of Xrms - the greater ||max obtained from the 
results shown in Fig. 1 is equal to 0.08%, which is a small 
error. On the other hand, ||max increases as the THD 
increases. Thus, the worst case is obtained for THD =      
20 dB, when ||max is equal to 1.84% (in both Figs. 1b and 
1c), which is an acceptable error. However, it should be 
noted that for a smaller THD more accurate measurements 
of Xrms are obtained – for example for THD = 30 dB, the 
greater ||max is equal to 0.3% (Fig. 1b), which is a relative 
small error. 

Many other simulations were performed for different 
values of A (smaller than FSR/2) and J (higher than 5) and 
in all cases a behaviour like the one depicted in Fig. 1 was 
always observed. 

3.2. Experimental results 

The results obtained using the estimator rmsX~ are 
compared with those obtained using the interpolated DFT 
(IpDFT) method [5]-[8]. The IpDFT method provides very 
accurate measurements of the amplitude of a sine-wave (and 
also of the rms value).  In both cases the Hann window is 
employed. For this purpose a graphical interface has been 
also implemented using MATLAB. In this graphical 
interface the acquired sine-wave and its spectrum are shown. 
To compute the spectrum the 4-term minimum error energy 
window is employed [4]. The rms values obtained using the 
estimator rmsX~  and the IpDFT method are also given. 

The sine-waves are obtained from different signal 
generators. The acquisition system has a 14-bit bipolar ADC 
with FSR equal to 6 V. The sampling frequency is equal to 
48.077 kHz.  

The sine-waves are first obtained from the Agilent 
33220A signal generator. The sine-waves parameters are: 
amplitude 1.5 V, frequency 1.2 kHz and offset 100 mV. The 
user’s manual specifies a THD smaller than 0.04% at this 
frequency. A number of 25 records are collected of M = 
1024 samples each. Fig. 2(a) shows, for each record, the 
results obtained using the estimator rmsX~ and the IpDFT 

method. Fig. 2(b) shows by means of the graphical interface 
the results obtained for the 13th acquired sine-wave. 
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Fig. 2. For the sine-waves obtained from Agilent 33220A signal 
generator: (a) The values of the Xrms measurements obtained using 
the estimator rmsX~ and the IpDFT method for each record, (b) The 

results obtained for the 13th acquired sine-wave. 

For each record, the results obtained using the 
estimator rmsX~  differs from those obtained using the IpDFT 
method beginning to the fourth digit after the decimal point. 
Thus, Xrms is accurately measured using the estimator rmsX~ . 
This behaviour is achieved because the acquired sine-waves 
have a high spectral purity (see Fig. 2(b)). 

Moreover, the accuracy of the proposed estimator is 
investigated for sine-waves with important harmonic 
components. For this purpose asymmetric sine-waves are 
acquired from the TG315 signal generator. The amplitude of 
the signals is 1 V, the frequency is 1 kHz and the offset is 
100 mV. The asymmetry ensures a high THD. A number of 
25 records are collected of M = 1024 samples each. Fig. 3(a) 
shows, for each record, the results obtained using the 
estimator rmsX~  and the IpDFT method. Fig. 3(b) shows by 



means of the graphical interface the results obtained for the 
15th acquired signal. 
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Fig. 3. For asymmetric sine-waves obtained from the TG315 signal 
generator: (a) The values of the Xrms measurements obtained using 
the estimator rmsX~ and the IpDFT method for each record, (b) The 

results obtained for the 15th acquired signal. 

From the spectrum of the 15th acquired signal presented 
in Fig. 3(b) it follows that after the fundamental the highest 
spectral line is equal to 21.07 dB, which is a high value. 
Even in this case the proposed estimator provides relative 
accurate rms measurements since they differs from those 
obtained using the IpDFT method beginning to the third 
digit after the decimal point.  

4. CONCLUSION 

In this paper an estimator for measurement the rms value 
of a noncoherent sampled sine-wave is proposed. The signal 
used in the estimation is the sine-wave from which the 
offset, a priori estimated, is removed. The performed 
simulations and experimental results confirm that the 
proposed estimator has a relative high efficiency for sine-
wave with THD smaller than or equal to –30 dB.  

Moreover, the proposed estimator is very simple to 
implement. Therefore, this is well suited for real-time 
measurement of the rms value of a discrete-time sine-wave. 

APPENDIX 

Determination the limit of the relative error of Xrms, lim 
Let us assume that the sine-wave is coherently sampled, 

i.e.  = 0. The theoretical rms value of the continual-time 
signal xw(t) is given by: 
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Assuming that w(·) is a H-term cosine window with the 
coefficients ai, i = 0, 1,…,  H  1. In the time-domain w(·) is 
defined as: 
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It should be noticed that for a cosine window |w(t)| = 
w(t) and NPSG = a0. 

From (A.1) the following inequality can be established: 
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We have: 
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The first integral from the last expression of (A.4) is 
given by: 
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For 0  k <  the second integral from the last 
expression of (A.4) is given by: 

 

 

   

 













































 



















JT

t
kk

kJ

i

t

t
kk

i

t

kk

H

h
h

JT

kk

H

h
h

kJ

i

i

dt
JT
htkftA

dt
JT
htkftA

dt
JT
htkftAa

dt
JT
htkftAa

2

1

1

22cos2sin

22cos2sin1

22cos2sin

22cos2sin

12

1

0

1

1

0

1

1









 (A.6) 

where .2,,2,1,
2

kJiT
k

i
t k
i 







 

 After some algebra we obtain: 
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It should be noticed that the same result is achieved for  
  k < 2. Thus, from (A.4) and (A.7) it can be 
established: 

   

.
2

22sin

2

2
0

2 0



 









K

k

k

K

k

k
K

k

JT

kk

NPSG
JTA

aJTAdttwkftA






 (A.8) 

By a similar demonstration the following equality is 
achieved: 
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The last integral from (A.3) is given by: 
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Using (A.8) - (A.10), (A.3) becomes: 
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where Xrmsi is the theoretical value of Xrms ( 2/AX rmsi  ) 
and Xrmski is the theoretical value of rms value of the kth 
harmonic component ( 2/krmski AX  ). 
 From the above expression it follows that the limit of the 
Xwrms, Xwrmslim, is given by: 
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 Based on (A.12) the limit of the relative error of Xms, lim, 
can be determined: 
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