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Abstract − Guidelines provided by [1] have been used 

worldwide to evaluate key comparisons. The aim of this 
paper is to demonstrate the validity of these procedures 
when polynomials instead of fixed values are provided as 
comparison results.  
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1.  INTRODUCTION 

Luckily most transfer standards materialise one 
measurement value each, but there many cases where the 
travelling standard is a measurement instrument that 
materialises a range of values. Typical examples are a 
piston-cylinder assembly for pressure measurements or a 
weighing instrument, but there many of them through all the 
branches of metrology. Up to now comparisons have been 
performed for fixed values of the standard whole range, but 
what is really useful and characterises the standard is a 
function, which is a polynomial most times. In fact, a 
polynomial is quite a general function because any function 
can be “expressed” as a polynomial by means of a Taylor 
series expansion. In practise, most instruments are 
developed in order to be linear, so that the polynomial case 
is more general than the one that is usually found, the 
straight line.  

2. DESCRIPTION 

Guidelines provided by [1] describe two procedures. 
This paper is only going to take into account procedure A 
which is the most common one and is the recommended one 
by the guidelines themselves. 

According to the Mutual Recognition Arrangement 
(MRA) [2] in order to evaluate a comparison the following 
parameters have to be determined: 

1. The degree of equivalence of each laboratory, which 
is expressed quantitatively by two terms: its deviation from 
the key comparison reference value and the uncertainty of 
this deviation at the 95 % level of confidence. 

2. The degree of equivalence between laboratories is 
expressed quantitatively by two terms: the difference of 
their deviations from the comparison reference value and 
the uncertainty of this difference at the 95 % level of 
confidence. 

2.1. Method  
Each laboratory i, (i = 1,…, N) will provide a 

polynomial pi(x) and its associated uncertainty ui(x) where x 
is the input quantity.  

pi(x)=ai0+ai1⋅x+ai2⋅x2+...+aik⋅xk     (1) 

ui(x) = bi0+bi1⋅x+bi2⋅x2+...+bih⋅xh    (2) 

The following steps have to be performed in order to 
evaluate the comparison: 

 
1. Determine the weighted mean of the laboratories’ 

measurements, using the inverses of the squares of the 
associated standard uncertainties as the weights: 
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2. Determine the standard deviation uy(x) associated with 
y(x) from (4). 
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3. Apply a chi-squared test to carry out an overall 
consistency check of the results obtained:  

- Form the observed chi-squared value. 

( ) ( )( )
( )

( ) ( )( )
( )xu

xyxp...
xu

xyxp
2
N

2
N

2
1

2
12

obs
−

++
−

=χ        (5) 

- Assign the degrees of freedom (N is the number of 
laboratories). 

1N −=ν                               (6) 

- Regard the consistency check as failing if (7). 

( ){ } 05022 ,Pr obs <χ>νχ                          (7) 

4. If the consistency check fails functions that fulfil 
condition (8) will be classified as discrepant at 5% level of 
significance. 

( ) ( ) ( ) 1>− xU/xyxp dii                     (8) 



If the consistency check does not fail, y(x) will be 
accepted as the reference value and uy(x) will be accepted as 
its standard uncertainty. Besides, the degrees of equivalence 
can be calculated. 

 
The degree of equivalence of laboratory i will be the pair 

of functions ( ) ( )( )xU,xd ii given by(9) and (10). 

( ) ( ) ( )xyxpxd ii −=                                (9) 

( ) ( ) ( )xuxuxU yii
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The previous formula involves a difference of two variances 
as a consequence of the mutual dependence of ( )xu2

i  and 

( )xu2
y .  

 The degree of equivalence between laboratory i and 
laboratory j will be given by the pair of 
values ( ) ( )( )xU,xd j,ij,i using (11) and (12). 

( ) ( ) ( )xpxpxd jij,i −=                          (11) 

( ) ( ) ( )xuxuxU yii
222 +=                           (12) 

It is obvious that all the previous treatment depends on 
x. This means that one laboratory can be discrepant for 
some range of x but it is not for the whole range. That is the 
power of the method.   

2.2. Validity  
In order to use this method the following conditions 

have to be applied according to [1]: 
1. The travelling standard has good short-term stability 

and stability during transport. 
2. Each participating laboratory’s measurement is 

realized independently of the other laboratories’ 
measurements in the comparison. 

3. For each laboratory a Gaussian distribution (with 
mean equal to the laboratory’s measurement and standard 
deviation equal to the provided associated standard 
uncertainty) can be assigned to the measurand of which the 
laboratory’s measurement is an estimate. 

If polynomial functions are used instead of functions 
there is no change for conditions 1 and 2. Condition 3 is the 
one that has to be checked. 

The first question must be how these polynomials have 
been obtained. It is clear that an approximation technique 
based on the “minimumχ²” approach has to be used. This is 
a very general method; a possible reference is [3]. In this 
approximation all calculations to obtain the polynomial are 
linear and, as a general property of Gaussian distributions is 
that any linear combination of Gaussian distributions is also 
a Gaussian distribution [4], it is clear that condition 3 is 
fulfilled and procedure A in [1] can be used for 
polynomials.  

 

3.  EXAMPLE 

In order to evaluate the validity of this procedure as well as 
its advantages a comparison in the pressure field will be 
evaluated. Its transfer standard is a piston cylinder assembly 
and the parameter that characterises it is called “effective 
area” Ap. A piston cylinder assembly is basically a piston 
that rotates freely inside a cylinder. The pressure is applied 
in the lower part of the assembly and the piston is loaded 
with masses. When the piston is under floating equilibrium 
the downward gravity force, which is caused by the masses 
on the piston, is equal to the upward force, which is exerted 
by the pressure on the assembly. Under these equilibrium 
conditions the pressure can be determined as the ratio 
between the gravity force and the effective area. The 
effective area itself depends on pressure. Most times it is 
enough to consider a linear dependence on pressure like 
(13), where A0 is the effective area for zero pressure, P is 
the nominal pressure and λ is the pressure distortion 
coefficient. 

Ap = A0⋅(1+λ⋅P)                                  (13) 

 Equation (13) is the result provided to customers in a 
piston-cylinder assembly calibration certificate, but in order 
to use procedure A in [1] in comparisons each laboratory 
provides different effective area values for different nominal 
pressures.  
 In this example the same comparison is going to be 
evaluated both ways, with fixed values and polynomials.  

Table 1.  Table of values provided for the comparison. Every 
laboratory has provided effective areas Ap with their uncertainties 
up (k = 1) for common nominal pressures. 

Lab 1 Lab 2 Lab 3 Nominal 
pressure 

(kPa) Ap 
(mm2) 

ur 
(x106) 

Ap 
(mm2) 

ur 
(x106) 

Ap 
(mm2) 

ur 
(x106) 

100 980,5531 7 980,5464 6,9 980,5663 15 

200 980,5855 7 980,5701 6,6 980,5808 15 

400 980,6604 6,6 980,659 6,4 980,6561 12 

600 980,717 6,5 980,744 6 980,7498 10 

800 980,798 6,3 980,8146 6 980,8082 10 

1000 980,892 6,3 980,9038 6 980,8994 10 

 
 

Lab 4 Lab 5 Nominal 
pressure 

(kPa) Ap 
(mm2) ur (x106) Ap 

(mm2) 
ur 

(x106) 

100 980,5525 7,2 980,5423 11 

200 980,5976 6,9 980,576 10 

400 980,648 6,8 980,6491 9,6 

600 980,7427 6,8 980,7351 9,6 

800 980,8111 6,7 980,7983 9,3 

1000 980,89 6,6 980,8917 9,3 

 
 
 
 
 
 
 
 
 



Lab 6 Lab 7 Nominal 
pressure 

(kPa) Ap 
(mm2) 

ur 
(x106) 

Ap 
(mm2) 

ur 
(x106) 

100 980,559 8,1 980,5546 13 

200 980,5985 8,1 980,5922 12 

400 980,6585 7,9 980,6524 10 

600 980,7388 7,8 980,7326 10 

800 980,809 7,8 980,8029 10 

1000 980,8993 7,8 980,8731 10 

 

If values in table 1 are evaluated according to procedure 
A in [1] these are the results which are obtained (steps 1 and 
2): 

Table 2.  Table of results obtained in steps 1 
and 2 according to procedure A in [1]. 

Nominal 
pressure (kPa) 

Weighted 
mean of Ap 

(mm2) 

Standard 
deviation of the 
weighted mean 

of up (mm2) 
100 980,5522 0,0031 

200 980,5858 0,0030 

400 980,6573 0,0029 

600 980,7365 0,0028 

800 980,8068 0,0028 

1000 980,8900 0,0028 
 

The observed chi-squared values are in Table 3 (the 
degrees of freedom are 6): 

Table 3. Results of the evaluation according 
to step 3.in procedure A en [1].  

Nominal 
pressure 

(kPa) 

Observed chi-
squared value ( ){ }2

obs
2Pr χνχ >  

100 3,3 0,772 
200 12,9 0,045 
400 1,4 0,968 
600 14 0,030 
800 5,3 0,501 
1000 7,5 0,278 

 
As it can be seen in table 3 for 200 kPa and 600 kPa the 

probability is less than 0,05, so the consistency check fails.  
Table 4 shows the evaluation of condition (8) for each 

laboratory: 

Table 4.  This table shows the evaluation of condition (8).  

Nominal 
pressure 

(kPa) 
Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

100 0,07 0,49 0,49 0,02 0,48 0,47 0,10 

200 0,02 1,38 -0,17 0,98 0,53 0,87 0,28 

400 0,27 0,15 -0,05 0,06 0,46 0,08 0,26 

600 1,70 0,73 0,71 0,51 0,08 0,16 0,21 

800 0,80 0,75 0,07 0,36 0,49 0,15 0,21 

1000 0,73 0,37 0,50 0,00 0,10 0,65 0,90 

 

As it can be seen Laboratory 1 is discrepant for 600 kPa 
and Laboratory 2 is discrepant for 200 kPa. From the 
metrological point of view these results do not say much. In 
fact there is no difference in the procedure, the operator, etc; 
so that it is difficult to find the reasons for these results if 
the measurement conditions where the same.  

The second part of this example is the comparison 
evaluation applied to the linear regressions of effective area 
versus pressure (table 5). 

Table 5.  Table of the linear regressions of the effective area versus 
pressure with their uncertainty equations (k = 1). These equations 
have been obtained with the data in table 1. 

 Effective area equation 
(mm2, P in kPa) 

Effective area uncertainty 
equation (mm2, P in kPa) 

Lab 1 A(P)= 980,5126⋅(1+ 3,7x10-7⋅P) u2(P)=2,7x10-5+7,5x10-8⋅P+6,9x10-11⋅P2 

Lab 2 A(P)= 980,5010⋅(1+ 4,0x10-7⋅P) u2(P)=2,6x10-5+7,0x10-8⋅P+6,4x10-11⋅P2 
Lab 3 A(P)= 980,5137⋅(1+ 3,9x10-7⋅P) u2(P)=1,1x10-4+2,9x10-7⋅P+2,4x10-10⋅P2 
Lab 4 A(P)= 980,5170⋅(1+ 3,8x10-7⋅P) u2(P)=2,8x10-5+7,9x10-8⋅P+7,4x10-11⋅P2 
Lab 5 A(P)= 980,4991⋅(1+ 3,9x10-7⋅P) u2(P)=6,1x10-5+1,7x10-7⋅P+1,5x10-10⋅P2 
Lab 6 A(P)= 980,5182⋅(1+ 3,8x10-7⋅P) u2(P)=3,8x10-5+1,0x10-7⋅P+1,0x10-10⋅P2 
Lab 7 A(P)= 980,5171⋅(1+ 3,6x10-7⋅P) u2(P)=8,1x10-5+2,2x10-7⋅P+1,9x10-10⋅P2 

 
These equations in table 5 are the ones that laboratories 

provide in their certificates. As they are provided in their 
certificates it is clear these equations are the proper 
measurement results, the ones that should be compared.  

In this case applying (3), (4) and (5) not single values 
but functions are obtained  as shown in plot 1. 

Plot 1.  Weighted mean function and this function plus and minus 
its uncertainty function ((1) and (2)). The green triangles are the 
weighted means obtained from fixed values. 
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The weighted mean function (plot 1) looks like a straight 

line although its functional relation is something much more 
complicated. In green the weighted means obtained by the 
previous method are also showed. The uncertainties are 
small enough not to be seen on the plot. 

The third step is the chi-squared test evaluation. Its 
results are showed in plot 2. 

 
 
 
 
 
 



Plot 2. It shows the probability that the theoretical chi squared 
value χ2 (ν) is more than the calculated chi squared value χ2

obs . 
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It is clear from plot 2 that condition (7) is never fulfilled, 

so that all the results are consistent. The evaluation of 
condition (8) does not provide fixed values any more. Now 
a function is obtained for every laboratory as shown in plot 
3. 

Plot 3. Evaluation of condition (8) for every laboratory. 
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It is clear than all these functions are more than 1 and 
condition (8) is always fulfilled.  
 The degrees of equivalence of each laboratory and 
between laboratories can also be evaluated as functions 
without loss of generality.   
 This example has shown that the evaluation of 
polynomials instead of fixed values is more realistic and 
provides more coherence to the results. This is obvious 
because the instrument behaviour is better expressed by 
means of polynomials instead of different fixed values. On 
the other hand, there is an agreement between the weighted 
means obtained by both methods according to plot 1, so the 
reference values are “basically the same”.   

4.  CONCLUSIONS 

The real characterization of many measurement 
standards follows a polynomial; that is the reason why there 
is a lack of information when only some corrections for 
fixed values are provided. This paper tries to demonstrate 
that polynomials can be compared in the same way as fixed 
values using the procedure A given in [1].  
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