
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

APPROXIMATE GCD OF INEXACT UNIVARIATE POLYNOMIALS
Pablo Lecumberri 1, Marisol Gómez 1, Alfonso Carlosena 2

1 Department of Mathematics, Universidad Pública de Navarra, Pamplona, Spain
2 Department of Electrical and Electronic Engineering, Universidad Pública de Navarra, Pamplona, Spain

Abstract − The problem of finding the greatest common
divisor (GCD) of univariate polynomials  appears in many
engineering fields. Despite its formulation is well-known, it
is  an  ill-posed  problem  that  entails  numerous  difficulties
when the coefficients of the polynomials are not known with
total  accuracy,  as,  for  example,  when  they  come  from
measurement data. In this work we propose a novel GCD
estimation method designed to cope with such inaccuracies.
An  example  of  recovery  of  transient  impulsive  signals  is
provided to show the performance of the proposed method
working on measurement data.
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1.  INTRODUCTION

The ever-increasing presence of polynomial  models  in
almost  every  engineering  field  has  prompted  a  renewed
interest  in  polynomial  methods  and  operations  in  recent
years. One fundamental operation that has a wide range of
applications  is  the  determination  of  the  GCD  a  set  of
polynomials. It is a useful tool in the study of linear systems
[1], computer vision, image processing [2], computer-aided
design [3] and system identification [4], among other fields.

If  the  polynomials  are  known  exactly  and  symbolic
computations  are  used,  long-known  methods,  such  as
Euclid’s  algorithm,  yield  the  correct  GCD  of  the  set.
However, data inaccuracy is unavoidable, specially when it
comes from measurements. In this situation, the exact GCD
(EGCD) of the set is  1 . This is due to the ill-posedness of
the  GCD  computation  problem.  The  solution  is  not
continuous on the input data, and even slight perturbations
make polynomials with non-constant GCD coprime. 

Two  definitions  of  approximate  GCD  (AGCD)  have
been proposed to find the GCD of sets of polynomials with
inexact coefficients. Both of them follow a common strategy
for solving ill-posed problems: The AGCD is defined as the
EGCD of another set of polynomials which is closest to the
input set in some sense, fulfilling some condition:

• The  d -AGCD is found when the degree of the
AGCD is restricted to be equal to some integer d .

• For ε -AGCD,  the degree of the AGCD is set to
the  maximum  degree  of  the  EGCD  of  all
polynomial sets within a distance  ε  of the input
set.

Most works on ε -AGCD first estimate the degree of the
AGCD  and  then  perform  a  d -AGCD  computation.
Techniques for AGCD estimation include decomposition of

matrices  [5,6],  optimization  [7,8,9,10]  and  root  grouping
[11]. Some of the proposed methods work only on sets of
two  polynomials,  and  most  of  them  are  impractical  for
computing the ACGD of many polynomials of large degree
due to their computational burden.

In  this  work  we  fully  develop  a  novel  d -AGCD
computation method suitable for sets of many polynomials
of large degree. Starting from the conditioned optimization
problem suggested by the  d -AGCD definition,  Section 2
shows the transformations that lead to the formulation of the
problem  as  a  simple  sequential  unconstrained  quadratic
minimization.  The proofs for  all  lemmas can be found in
[12]. Section 3 shows an application of AGCD computation
to the indirect measurement of impulsive transient signals
through a blind deconvolution operation.

The notation  used  in  this  work  is  fairly  conventional.
Vectors and matrices are represented by bold lower case and
uppercase letters respectively. Polynomials and scalars are
written in normal font-weight. The complex conjugate of a
scalar or matrix is denoted by a * superscript, while T and H
denote  respectively  the  transpose  and  complex  conjugate
transpose of a matrix. The Moore-Penrose pseudoinverse of
a matrix is represented with a + superscript . Superscripts (r)
and (i)  refer to the real and imaginary part of a scalar or
vector.

2.  AGCD COMPUTATION METHOD

2.1. Preliminaries
The proposed AGCD method builds on the vectors and

matrices introduced by the following definitions.
Definition  2.1 (Modes).  Consider  the  column-vector

)1,1()( +∈ mx Mm  defined as
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Definition 2.2 (Associate modes). We say a mode kz ,m

is an associate mode of a polynomial )(xa  if z  is a root of
)(xa  with multiplicity greater than k .
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Modes  have  been  used  by  the  signal  processing
community  for  a  long  time,  albeit  under  a  different
definition.  Both  definitions  are  equivalent  for  most
applications. Definition 2.1 leads to simple formulations of
the relations between modes and polynomials,  such as the
fundamental property exposed by the following lemma. 

Lemma  2.1. Given  a  set  of  polynomials
{ }Qimxaxa ii ,,1,))(deg()( K=≤=A  with  coefficients

matrix  ),1( Qm +∈ MA ,  a  set  of  associate  modes  of  a
polynomial  is  included  in  the  orthogonal  complement  of

)Range(A  if and only if they are complex conjugates of the
associate modes of the GCD of the set of polynomials A . 

2.2. Constrained optimization problem
We follow the  definition  of  the  d -AGCD  to  pose  a

constrained  optimization  problem.  The  distance  between
given  and  modified  polynomial  sets  requires  a  suitable
definition  of  a  polynomial  metric.  We adopt  the  sum of
squared  differences  between  the  coefficients  of
corresponding  polynomials  in  both  sets,  which leads  to  a
least squares estimation of the GCD. It can be conveniently
expressed as the squared Frobenius norm of the difference
between the coefficients matrices of the input set,  A , and

the modified one, Â : 
2ˆ
F

AA − .

Lemma 2.1 gives the condition that must be imposed on
Â  so  that  the  modified  polynomial  set  has  a  d -degree
GCD. Therefore,  the AGCD of a set of polynomials  with
coefficients  matrix  A  can  be  computed  by  solving  the
following conditioned nonlinear optimization problem:

( ){ }

( )
polynomial degree  a of

 modes associate by the spanned  Range

ˆ:subject to

ˆmin

H

H

2

,1ˆ

−

=⋅

=⋅

−
+∈

d

d

FQm

T
ITT

0AT

AA
A M

(3)

The coefficients of the AGCD are the complex conjugates of
those of the polynomial  )(xb  whose associate modes span

( )TRange .  Problem  (3)  is  no  longer  ill-posed,  but  still
difficult to solve due to its conditioned nature.

The  objective  function  in  (3)  can  be  simplified  and
matrix Â  removed from the optimization problem. Let the

set of columns of T  be extended to a base of ( )1+m , so that
[ ]ST  is an orthogonal matrix. Then, we have:
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Under condition 0AT =⋅ ˆH , the objective function is
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Clearly, the minimum of the objective function under the
constraints  in  (3)  will  be  attained  for  a  matrix  Â  with

columns in  ( )SRange  such that  ( ) 0AAS =−⋅ ˆH .  That  is,

the columns of  Â  must be equal to the projections of the
columns  of  A  onto  ( )SRange .  The  estimated  AGCD is
completely  determined  by  T .  Instead  of  the  objective
function in (3) we can equivalently minimize
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 Now,  the  last  condition  in  (3)  will  be  expressed  in
matrix form. To this end, the following lemma is introduced.

Lemma  2.2. Given  a  d -degree  polynomial
d

d xbxbxbbxb ⋅++⋅+⋅+= K2
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the  orthogonal  complement  subspace  of  )Range(B  is
spanned by the conjugates of the associate modes of )(xb .

Lemma  2.2  gives  the  relation  that  must  hold  if
( )TRange  is  spanned  by  the  conjugates  of  the  associate

modes of a polynomial )(xb : 0TB =⋅H . As )(xb  is unique
up to  scalar  multiplication,  some sort  of  normalization  is
needed. We require its  vector of coefficients to have unit
norm, giving the following equivalent optimization problem:

( ){ }
( )

1

:subject to

trmin

H

H

H

HH

1,1

=⋅

=⋅

=⋅

⋅⋅
+∈

bb

ITT

0TB

TAAT
b

d

dM

(8)

2.3. Sequential unconstrained optimization problem
 Linearizing  the  conditions  in  (8)  around  a  pair  of

matrices  B ,  T  satisfying  them  yields  the  following
expressions:
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The second and third equations in (9) hold if the columns
of  TΔ  and  bΔ  are  restricted  to  be  orthogonal  to  the
columns  of  T  and  b ,  respectively.  The  minimum  norm
solution for TΔ  in the first equation in (9) lies in ( )BRange
, since components in its orthogonal complement, ( )TRange
, do not contribute to the right side. So the solution to the
first two equations in (9) is given by

( ) TBBT ⋅Δ⋅−=Δ
+ HH , (10) 

Furthermore, due to the structure of matrix BΔ , (10) can be
transformed into
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Let  ( )( )1,12 +⋅∈ mdMt  be a real column vector built
with the real and imaginary parts of the columns of T :
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Equation  (11)  allows  to  express  parameter  vector  tΔ  in
terms  of  bΔ .  To  this  end,  we  define  matrices

( )1,1 ++∈ dmk MC ,  dk ,,1K= , as  ( ) kk LBC ⋅=
+H  and

note that, from (11), we have
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Finally, the orthogonality condition  0bb =Δ⋅H  can be
expressed in terms of the real  and imaginary parts of  the
vectors involved as:
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Let  ( ) ( )( )12,12 −+∈ mmMQ  be  a  full  column  rank
matrix so that  ( )QRange  is the right null space of the first
matrix in (16). Then we have
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for some column vector ( )( )1,12 −∈ mMx .
Starting from a pair B , T  that satisfy the conditions of

the optimization problem (8),  the perturbation that can be
applied to their elements so that the conditions are still met
is given by (14) and (17). Incorporating these results to the
Taylor expansion of the objective function ( )tf  in (8),
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yields the objective function of the equivalent unconstrained
optimization problem:
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The AGCD computation method we propose consist of
the following steps:

1. Initialization:  Find  initial  values  for  b  and  T .
Methods based of the Sylvester matrix of the set
of polynomials give good initial values.

2. Compute vector t  (9), matrices V  (15) , Q  (17).
3. Find the value of vector x  that minimizes (19).
4. Update b  (17), and find T  such that 0TB =⋅H .
5. If convergence has not been reached, go to step 2.

The coefficients  of  the  AGCD are  given by the  complex
conjugates of the elements of b .

3.  PERFORMANCE TEST

The accuracy of the estimation provided by the proposed
method has been compared with the results obtained with
other methods. To this end, the common factor estimation
method  (COFE)  [10],  the  resultant  matrix  pencil  method
(Res-MP)  [13]  and  the  proposed  approach  were
implemented  in  MATLAB.  A  benchmark  example  was
selected from [14]. It consists of a set A  of 8 polynomials
of  degree 20 with GCD of degree 3:
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Fig. 1. (a): CRB (dashed) and MSE of AGCD computation methods: COFE (0 iterations) (diamonds), COFE (2 iterations) (triangles),
Resultant MP (squares) and proposed method (circles). (b): Mean computation time for each method implemented in MATLAB. 

Zero-mean Gaussian noise was added to the coefficients
of the polynomials in A . Different levels of noise, leading
to  SNR values  between  15 and 72,  were considered.  For
each noise  level,  100 realizations  were generated  and the
AGCD estimated with each method.

Fig. 1 (a)  shows the MSE for each method, along with
the  Cramer-Rao  lower  bound  (CRB)  computed  for  this
example.  Both  the  proposed  method  and  COFE  with  2
iterations  attain  the  CRB  for  SNR  values  above  48  dB.
However, due to the lower number of parameters and the
smaller size of the matrices involved, the proposed approach
is  much faster,  as  Fig.  1 (b)  shows.  This  is  an important
feature,  since  high  computational  burden  may  impair  the
application of a GCD computation method to polynomials
of large degree.

Only Res-MP is faster then the proposed method for low
SNR values, but it shows lower accuracy in the estimations
and fails to attain the CRB for high SNR values.

4.  APPLICATION EXAMPLE

This section shows an application of AGCD computation
to  blind  deconvolution  in  single  input  multiple  output
(SIMO)  linear  time  invariant  (LTI)  systems.  One  such
system, with three channels, is depicted if Fig. 2. 

Fig. 2.  SIMO system.

Under  the  LTI  assumption,  the  Z-transforms  of  the
outputs are equal to the product of the Z-transforms of the
common input and the channels:

.3,2,1),()()( =⋅= kzHzBzX kk (21)

If  all  signals  involved  have  finite  length,  then  the  Z-
transforms  are  finite-degree  polynomials  in  1−z  whose
coefficients are the samples of the signals. Furthermore, if
the Z-transforms of the channels do not have a zero common
to  all  of  them,  then  )(zB  is  the  GCD  of  the  set
{ })(),(),( 321 zXzXzX .  Thus, through a GCD computation,
the input signal can be estimated blindly from the outputs of
the system, that is, without knowledge about the channels.
This approach requires a robust AGCD computation method
to cope with measurement and model errors. The suitability
of the proposed method for this task has been tested with a
force's time-history recovery experiment.

The  experimental  set-up  for  the  acquisition  of  real
signals  consists  of a freely supported steel beam hit  by a
sensorized hammer (Fig. 3). The acceleration caused by the
impact  is  detected  by  four  piezoelectric  accelerometers
placed upon that beam. These sensors provide the output of
the multichannel system. 

Fig. 3.  Experimental set-up: Freely supported beam,
accelerometers and impact hammer.



Fig. 4.  Output signals from accelerometers.

Figure  4  shows  the  four  output  signals.  The
accelerometer  in  the  head  of  the  hammer  gives  a  direct
measure  of  the  excitation  signal.  It  is  not  used  by  the
deconvolution method; it only serves as a reference to assess
the accuracy of the estimation.  All signals are sampled at
4096 samples/second by the acquisition device.

The  infinite  length  of  the  output  signals,  due  to  the
excitation  of  vibration  modes,  violates  the  assumption  of
finite-length  signals.  In  order  to  apply  the  proposed
algorithm, some processing must be done prior to the GCD
computation.  The channels  transforming the impact  signal
into the accelerations sensed by the accelerometers can be
regarded as infinite impulse response (IIR) systems. Their
system response is:
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The denominator )(zP  is common to all of them. Its roots
give  the  frequency  and  damping  of  the  vibration  modes,
which depend on the characteristics of the beam and not on
the position of the impact and measurement points.

If  the  poles  are  estimated  from the  output  signals,  an
estimation )(zP

)
 of the denominator can be obtained. Then,

a finite impulse response (FIR) filter with system response
)(zP

)
 can be applied to the output signals to transform them

into finite-length signals:
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There are many methods proposed in the literature for
solving  the  so-called  exponential  modelling  problem  of
estimating  the  parameters  of  damped  sinusoids.  We have
used  the  approach  described  in  [15].  Fig.  5  shows  the
estimated poles in the Z-plane.

Fig. 5.  System poles estimated from output signals.

The  results  of  filtering  the  output  signals  with  a  FIR
filter whose system response has the poles of Fig. 4 as zeros
is shown in Fig. 6. These are finite-length signals that come
from the same input, which can be obtained through GCD
computation, as explained at the beginning of this section.

The proposed d -AGCD computation method is applied
to the finite-length signals. This method requires a value for
the degree of the GCD. Several methods to estimate it have
been published [5],[8]. However, we have adopted a simpler
approach:  The approximate  GCD is  computed for  several
degrees,  and  the  one  that  gives  a  backward  error
significantly  smaller  than  the  next  one  is  chosen  as  the
candidate GCD degree.

Fig. 7 shows the impact signal provided by the sensor
embedded  in  the  hammer  (dotted  line)  and  the  estimated
one, provided by the proposed method (solid line). Note that
the  estimation  has  been  conveniently  scaled,  since  this
information  cannot  be  obtained  through  blind
deconvolution. The estimation matches closely the reference
signal, and parameters such as signal length, rise and decay
rate could be computed from the estimation.

Fig. 6.  Output signals after removing poles’ contribution.



Fig. 7.  Estimated input signal (solid line) and reference from
impact hammer (dotted line).

4.  CONCLUSIONS

This  paper  gives  a  full  description  of  a  novel  AGCD
computation  method  based  on  the  relation  of  modes  and
polynomials. The proposed algorithm consists of sequential
minimizations  of  quadratic  functions,  hence  its  fast
performance  and  ability  to  work  with  sets  of  many
polynomials  of  large  degree.  This  feature  allows  its
application  to  many  measurement  techniques  involving
polynomial  models.  It  compares  favourably  with  other
AGCD computation methods. Thorough comparisons can be
found in [12].

An  example  is  given  that  shows  how  the  proposed
AGCD computation method can be used to perform blind
deconvolution of finite signals in a SIMO framework. The
time history of the force exerted by a hammer on a beam has
been recovered (up to a scaling factor) from the acceleration
signals provided by sensors placed on the beam’s surface.
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