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Abstract − The paper presents a stochastic sampling 

method applied to a measurement of the mean value of the 
product of two arbitrary signals. This method is especially 
convenient for measuring electric power, electric energy 
consumption, as well as root-mean-square of voltage and/or 
current. The method features a very simple hardware and the 
possibility of selecting the measurement accuracy by 
choosing a suitable measurement interval. When measuring 
electric energy, accuracy better than 0.01 % is achieved. 

The measurement uncertainty of the stochastic sampling 
method is analysed and the influence of dominant factors is 
quantitatively derived. Special consideration is given to the 
influence of dispersion of A/D converter outputs and the 
waveforms of the two input signals as contributors to the 
measurement uncertainty. As the exact shapes of the 
waveforms are not known in advance, it is not possible to 
determine their influence on the measurement uncertainty. 
To overcome this issue, a novel additional hardware is 
designed, which provides the estimate of measurement 
uncertainty during the experiment - simultaneously with the 
measurement result, its measurement uncertainty is available 
on-line. 

Keywords: stochastic measurement, sampling method, 
measurement uncertainty. 

1.  INTRODUCTION 

The common way to measure constant and variable 
signals is the application of sampling methods – A/D 
converters, usually of sufficient resolutions and speeds, as 
well as powerful DSPs, are readily available. The fast 
progress of digital hardware, as well as falling prices of 
these components, make this measurement concept to be 
dominant nowadays.  

However, in some areas of signal measurement this 
concept is not superior. Following the ideas of [1], methods 
for stochastic sampling and signal processing have been 
developed [2,3,4]. A number of stochastic sampling 
instruments [3,4] has been developed for either generic or 
very specific applications. These achieved higher accuracy, 
lower device complexity, higher measurement speeds, 
efficient multi-channel measurements and/or lower 
instrument price. 

The stochastic instruments are based on utilisation of 
very-fast low-resolution A/D converters (flash converters). 

Their quite simple hardware produces a small number of 
systematic errors (mainly due to comparator offsets) that can 
be easily kept in check. Discretization error, inherently large 
due to a low resolution, is suppressed by superimposing 
random dithering signal onto the measured input. This signal 
sum is converted by the flash A/D converter and then very 
quickly processed by simple logic circuitry into the 
measurement result. 

The same instrument can be used either for a high 
accuracy  measurement over a longer time interval or for 
moderate accuracy for fast measurement. The realised 
instruments, employing low-resolution A/D converters, for 
50 Hz r.m.s. voltage measurements [2,3] achieve the relative 
accuracy better than 0.1 % for twenty milliseconds and 
approximately 0.01 % for one second time interval. When 
the measurement result is an integral of the input signal (for 
instance, electric energy measurement) , the time interval is 
not a limiting factor and the relative accuracy of a even 2-bit 
instrument can be below 0.01 % when the time interval is 
greater than half an hour [3]. 

The estimation of the measurement uncertainty of these 
stochastic methods should be in accordance with [5] and 
should point out the contribution of individual influencing 
factors. As most factors (sampling frequency, sampling 
resolution, measurement time interval, etc.) are known in 
advance, their contribution can be theoretically quantified. 
Numerous detailed computer simulations confirm the 
theoretically predicted uncertainties. However, some factors, 
like the exact waveforms of the measured signals, are not 
fully predictable for every individual measurement. Hence 
their influence on the uncertainty estimate escapes from the 
theoretical considerations – the only tool left is the computer 
simulation of a particular waveform, but this is only 
available in the post-processing manner. 

The utilised stochastic methods already have sufficient 
information for estimating the influence of such factors onto 
the measurement uncertainty. This has been the motivation 
to develop theoretical methods and experimental devices for 
on-line estimation of such influences. One such procedure 
for estimation of the measurement uncertainty when the 
signal waveform is not known in advance and an additional 
hardware that executes it, is presented in this paper. The 
instrument is primarily developed for accurate measurement 
of electric energy, but the novel method and the proposed 
additional hardware can be applied to a whole class of 
similar tasks. 



2.  STOCHASTIC MEASUREMENT METHOD 

The block-diagram of one stochastic sampling two-
channel instrument is shown in Fig. 1 [2,3]. The two input 
signals, y1 and y2 , which are arbitrary time-varying voltages, 
are brought to the two instrument inputs. Two random, 
uniform, uncorrelated dithers h1 and h2, with probability 
density distributions  and , are superimposed 
onto the two inputs. The DC voltage levels g and -g serve as 
threshold levels for comparators C
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1, C2, C3 and C4. For 
proper operation, the following conditions must be satisfied:  
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The level limiter (LL) blocks adjust the comparator 
outputs to digital TTL level. Comparators C1 and C2 with 
their LL blocks make up one A/D 2-bit flash converter with 
the resolution of Δ = 2 g. The conversion result is a 2-bit 
numerical variable , defined as , which 
can assume a value from the following set {-1, 0 ,1}. In the 
same manner, comparators C
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3 and C4 and their LL blocks 
make up the second flash A/D converter, whose output 
result is the numeric variable , . 2Ψ 2 12 1b b−Ψ = −

Logic signals b11, b-11, b12 and b-12 are the inputs to the 
logic network made up of AND and OR circuits which acts 
as a hardware multiplier of variables Ψ1 and Ψ2. The result 
is the stochastic variable ,  which also 
assumes the value from the set {-1,  0, 1}. When the product 
is , the counter is incremented; when , the 
counter is decremented and when Ψ = 0, the counter state 
remains unchanged.  

Ψ 1Ψ = Ψ ⋅Ψ

1Ψ = 1Ψ = −

The average value measurement result, Ψ , is [2]: 
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where ( )1 iΨ  and ( )2 iΨ  are the consecutive results of 
A/D conversions while N is the number of samples within 
the measurement interval ( )2 1t t− . 

In order to obtain a deeper insight into the measurement 
uncertainty, let us introduce the instantaneous error e, which 
is the difference between the sampled and the actual values 
of the product of the two signals:  

  (3) 2
1 2e = Δ Ψ − y y

It can be shown that the two terms in (3) are statistically 
independent, hence the average value of the multiplier is: 

 2
1 2y y eΔ Ψ = +  (4) 

and the variance of Ψ  is given as: 
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It can also be shown that the third central moment M3 of 
the measurement error e is limited, i.e. 

 KeeM ≤−= 3
3 )(  (6) 

and hence both the Central limit theorem and the Theory 
of samples apply to the instantaneous error e. Consequently, 
the variance of its average value is: 
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From (3) and (7), the variance of the average value of the 
measurement error e can be obtained as:  
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Fig. 1.  Two-channel 2-bit stochastic sampling instrument  



To sum up, the mathematical expectation of e is zero 
(from (2) and (4)), its variance is given by (8) and its 
probability density distribution is normal.   

If the waveforms ( )1f t  and ( )2f t are known, then the 
variance given by (8) can be exactly calculated. Then the 
standard measurement uncertainty, u, of type A, according 
to [5], defined as:  

 eu σ=  (9) 

can be exactly calculated as well.  
If the waveforms ( )1f t  and ( )2f t are not known, the 

variance (8) cannot be calculated. However, it can be shown 
that the measurement method carries sufficient information 
to enable experimental on-line determination of the 
variance. 

This extended abstract analyses only the contribution of 
A/D conversion to the total measurement uncertainty, as it is 
the dominant factor.  

3. ON-LINE DETERMINATION OF MEASUREMENT 
UNCERTAINTY 

The continuous integration in (8) can substituted by a 
digital integration, hence (8) becomes: 
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If the two sums in (10) are denoted as I1 and I2 , the 
variance can be rewritten as: 
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To determine the standard deviation eσ  for the unknown 
waveforms of measured input signals, (11) can be utilised in 
a dedicated additional hardware. With the known parameters 

 and N, it only remains to determine the sums Δ 1I  and 2I . 
For that purpose, circuits of Figs. 2 and 3, are proposed. 

 

Fig. 2.  The circuit for determination of I1 quantity  

Combination of the basic instrument structure of Fig.1 
with the additional circuits of Figs. 2 and 3, represents a 

major improvement when measuring unknown input 
waveforms. After taking N samples of voltages y1 and y2 in 
the time interval (t1, t2) the main result is the mean value of 
the two signal product – the ratio of the content of the 
counter of Fig.1 and the number of samples N. At the same 
time, the measurement uncertainty is obtained using the 
contents of the two counters of Figs. 2 and 3 and applying 
equation (11).  

4. INITIAL CASE STUDY  

The described stochastic sampling method can be 
utilised for measurement of two arbitrary signals. It is useful 
to start the analyses of achieved measurement uncertainties 
for well-known and commonly met in practice signals. This 
paper describes the stochastic method variant aimed for 
measurements of electric power and electric energy. Hence 
signals y1 and y2 represent the AC voltage and AC current, 
with amplitudes V and I , respectively, and the mean power 
is measured.  

To illustrate the contribution of A/D conversion process 
to the measurement uncertainty, some operating conditions 
have to be defined. The prototype instrument has 2-bit flash 
A/D converters, operating at 160 kHz sampling frequency. It 
is assumed that both voltage and current signals are purely 
sinusoidal 50 Hz waves and they are in phase.  

For the above conditions, the variance due to A/D 
conversion process is obtained from (8) as:   
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and its contribution to the relative standard measurement 
uncertainty is:  
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Equation (13) indicates that the measurement uncertainty 
due to A/D conversion process decays with the increase in 
the number of samples, i.e. with the increase of the 
measurement time interval and/or sampling frequency. The 
illustration of absolute values, for the above conditions, is 
given in Fig. 4, showing the relative measurement 
uncertainty ur as a function of measurement time interval. 
As an example, in order to achieve the relative (expanded) 
measurement uncertainty U = 0.01 % (U k  where the 
coverage factor of k = 2 is chosen), a time interval of 1250 s 
is necessary. For one day of measurements, the 
U = 0.00012 % is achieved.   

u= ⋅

It should be noted that measurement interval of few 
hours or few days are quite common in measurement of 
electric energy consumption.  

The final version of the paper will present measurement 
uncertainty for typical cases of distorted voltages and/or 
currents, as well as for non-unity power factors.  



 

Fig. 3.  The circuit for determination of I2 quantity 
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Figure 4: The contribution of A/D conversion to the relative 
standard measurement uncertainty as a function of measurement 
time interval, at 160 kHz sampling rate, sinusoidal waveforms.  

5. CONCLUSION 

The stochastic measurement method, described in the 
paper, utilises coarse but robust 2-bit flash A/D converters. 
The measurement uncertainty depends on the sampling 
frequency, chosen time interval of measurement and the 
unknown waveforms of the two input signals. On the basis 

of the uncertainty formula, a simple hardware, that 
calculates the measurement uncertainty on-line, is proposed. 
This hardware calculates the uncertainty both partially and 
globally, thus the proposed device can at any instant give 
data both on measured variable and on its uncertainty. 

The paper discusses application of the method for 
measurements of electric energy consumption. It is shown 
that, in typical circumstances, the relative extended (k = 2) 
uncertainty due to the dispersion of A/D converter outputs 
becomes less then 0.01 % after an twenty minutes time 
interval and is negligible after a period of one day. 
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