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Abstract − The present work exposes the comparison 

among numerical methods used in the calibration of a set of 
high accuracy weights by subdivision method. This paper 
covers the comparison of the mean values, the uncertainties 
and correlations obtained with the Orthogonal, the Gauss 
Markov, the Ordinary Least Squares and the Weighted Least 
Squares (Lagrange Multiplier) methods. These methods are 
the most commonly used in the realization of the mass scale 
in the National Metrology Institutes (NMI). Also, the 
uncertainty evaluated by these methods was compared 
against the evaluation by a numerical simulation method 
(Monte Carlo’s method). 

Keywords subdivision, mass calibration, numerical 
multivariate simulation, Monte Carlo. 

1.  INTRODUCTION 

In mass metrology, the use of the subdivision method is 
a need for the realization of the mass scale because the 
traceability of the mass values towards the definition of the 
kilogram is through 1 kg Pt-Ir prototypes, e.g., k21. 
Therefore, the realization of the mass scale requires the 
calibration of different nominal weight values, from 1 mg to 
5 t, using mass standards of the same nominal value (direct 
comparison) or using one reference weight to calibrate a set 
of weights where the sum of their nominal values are the 
same as the reference (subdivision). The equation system is 
solved to find the mass values of the weights which satisfy 
the comparison series according to specific adjustment 
criteria due to the fact that the equation system is 
overdetermined.  

 
The solution for this kind of systems requires a major 

number of measurements and the use of advanced 
mathematical analysis than in the calibration by direct 
comparison (one test weight against one reference weight), 
however, due to the need to realize the mass scale starting 
from 1 kg and the possibility to obtain reliable results by 
including a check standard, this method is recommended in 
the calibration of weights class E1 according to OIML R-111 
[1].  

2.  ADJUSTMENT METHODS FOR THE 
SUBDIVISION OF THE KILOGRAM 

2.1. Least Squares 
The theory used in the subdivision of the kilogram is the 

least squares approach. The measurement model is: 

 eYXβ −=  (1) 

2.1. Ordinary Least Squares (OLS) 
In the OLS, the function that will be minimized is [13]: 

 ( ) ( )yyyy ˆˆ T2 −−=S  (2) 

Equation (2) represents the squared errors S2 where ŷ is 
the estimated of vector Y. The estimated  is obtained by: β̂

 ( ) YXXXβ T1T
OLS

−
=ˆ  (3) 

Where the elements of  are the mass values 
informed as corrections. The variance-covariance matrix 
(further called only covariance matrix) is calculated by the 
following expression: 

OLSβ̂

 ( ) ( ) 21Tˆcov σ−
= XXβOLS  (4) 

The elements of the diagonal of matrix (4) are the 
variances of the weights, the rest of the elements are the 
covariance among weights. The variance due to adjustment 
of OLS, σ2, is obtained by: 

 
nm −

=
eeT

2σ  (5) 

2.3 Weighted Least Squares (WLS) 
The WLS are solved similar to the OLS, however the 

function that will be minimized is χ 2: 

 ( ) ( yyWyyχ 2T2 ˆˆ −−= − ) (6) 



Formula (6) will have a chi-squared distribution with n 
degrees of freedom where vector Y has a normal distribution 
with variance W 2. When this condition is satisfied, the 
system solution will be: 

  (7) ( ) 'Y''X''X''X'β T1T
WLS

−
=ˆ

With 'X'  and 'Y'  weighted as follows [3]:  

 XW'X' 2
1

=  (8) 

 YW'Y' 2
1

=  (9) 

And the covariance matrix is: 

( ) ( ) ( ) T11T1Tˆcov 'X''X''X'W'X''X''X'β T
WLS

−−−
= (10) 

2.4 Weighted Least Squares by Lagrange Multiplier 
(WLS-LM) 

This solution method is one of the most commonly used 
in the NMI. The solution vector (estimated mass values) will 
be obtained by minimizing function (6) satisfying the 
following condition: 

 ( ) 0yβ, =ˆf  (11) 

Matrix  is singular; therefore it is necessary to 
add a restraint, in this case, the Lagrange multiplier, to 
remove the singularity, so the function that will be 
minimized is: 

( ) 1T −XX

  (12) ( ) ( ) ( yβ,λyyWyyχ T2T2 ˆ2ˆˆ f+−−= − )

]

The vector with the estimated mass values of the weights 
is obtained with (7) and covariance matrix with (10). 

2.5 Orthogonal method. 
This method uses equations (3) and (4) from the solution 

by OLS, with a design matrix X particularly chosen to 
obtain non correlated values in the covariance matrix. In 
order to get the orthogonal design matrix X, some weighing 
comparisons (line vectors of X and their corresponding 
elements in vector Y) are repeated or removed. 

2.6 Gauss Markov method (GM). 
The main difference between GM and the others 

methods explained before is that in this method Y is 
assumed as a function of multiple random variables, 
whereas in the others Y is only a function of the variability 
of the indications of the balance [7]. The function that will 
be minimized is the same as in WLS (6), however the 
weighting matrix is different. The solution in GM [6] 
proposes a covariance matrix related to Y which includes all 
the uncertainty sources of the measurement model giving a 
complete covariance matrix [7] unlike the other methods. 
The covariance matrix will be: 

  (13) 
T

uuφJJW =

With: 

   (14) [ ]adjVρΔLu JJJJJ
a

=

Ju is the Jacobian of Y which, in turn, is a matrix 
composed by the vectors of the input quantities of the mass 
measurement model: 

   (15) [ adja εVρΔLY =

φ  will be the matrix made up of variance-covariance 
matrices: 

  (16) 
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Equation (13) is the matrix form of the GUM for a 
multivariable model. The estimated mass values are 
obtained with the following equation [7]: 

 ( ) YWXXWXβGM
1T11Tˆ −−−=  (17) 

With the covariance matrix: 

 ( ) ( 11Tˆcov −−= XWXβGM )  (18) 

The methods mentioned in this paper are widely 
discussed in [11]. 

2.7 Numerical Simulation by Monte Carlo’s method. 
The numerical simulation by Monte Carlo’s method 

(NSMC) combines probability distributions of the input 
quantities included in the measurement model giving values 
for the output quantity [12]. However, just like in the 
application of the GUM, NSMC explained in supplement 1 
of GUM [12] does not consider the case for a multivariable 
output. In order to obtain the uncertainty of the estimated 
output quantities (mass values of the weights), a generalized 
procedure of NSMC for the multivariable case is made: 

( )nXXXfY ,...,, 211 = Y1X
2X

nX

( )nXXXfY ,...,, 212 = 2Y

( )nn XXXfY ,...,, 21= nY

( )nXXXfY ,...,, 211 = Y1X
2X

nX

( )nXXXfY ,...,, 212 = 2Y

( )nn XXXfY ,...,, 21= nY
 

Fig 1. Measurement model with multiple input quantities and 
multiple output quantities.  

The probability distributions of the input quantities are 
combined according to the corresponding measurement 
model, resulting in probability distributions for the output 
quantities. In this case, the input quantities are the mass 
differences, the air densities during the weighing process, 



the volume of the weights, the value of the reference weight. 
The output quantities are the mass values of the weights 
under calibration. 

3.  NUMERICAL EXAMPLE: MEASUREMENT 
DATA SET UP AND MATRIX EQUATIONS. 

In this example, real calibration data were used obtained 
from three weighing cycles ABBA for each yi (for each 
weighing comparison according to the corresponding design 
matrix) [2]. For all methods the mathematical model is: 

 ( ) adjqra VVmy ερ −−−Δ=  (19) 

The matrices vary depending on the method and 
restrictions. In the Orthogonal method, the matrix equation 
is shown in (20). The matrix equation for both GM and OLS 
methods is given in equation (21) and for WLS – LM 
method is presented in formula (22). Table 1 shows the main 
data of the weights used in the calibration. Data of mass 
differences, air density and their uncertainties for the matrix 
equations in (21) and (22) are shown in table 2. In the 
Orthogonal method, some comparisons were eliminated and 
others were repeated. The mass differences, air densities and 
their corresponding uncertainties for matrix equation (20) 
are shown in table 3. 

 
In order to compare the performance of the different 

adjustment methods, the uncertainty was evaluated with the 
same contributions (mass value of the reference weight, air 
density, volume of the weights, mass differences and 
adjustment error) following the recommended solving 
procedure for each method. Except for the GM method, the 
covariance matrix is not complete in Orthogonal, OLS and 
WLS-LM methods because it only covers type A 
uncertainty due to adjustment error. Type B uncertainties in 
these methods are combined with a proportionality factor 
according to [3].  
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Table 1. Data of the weights involved in the calibration process  

Value 
g 

Correction
mg 

u (k=1) 
mg 

volume 
cm3

u (k=1) 
cm3

1 000 0,005 0,015 124,894 0,025 
500 --- ---    62,421 0,025 
200 --- ---    24,983 0,025 

200 * --- ---    24,983 0,025 
100 --- ---    12,480 0,001 25 

100 * --- ---    12,406 0,025 

Table 2. Measurement data used in GM, OLS and WLS-LM 
methods 

yi
Δm 
mg 

u (Δm) 
(k=1) 
mg 

ρa
mg cm-3

u (ρa) 
(k=1) 

mg cm-3

1 -0,141 7 0,020 41 0,961 74 0,000 10 
2 -0,176 7 0,020 41 0,961 48 0,000 10 
3 0,016 7 0,012 91 0,961 57 0,000 10 

4 0,043 3 0,014 72 0,961 13 0,000 10 

5 -0,083 3 0,011 90 0,960 73 0,000 10 
6 0,038 3 0,010 80 0,960 71 0,000 10 
7 0,000 0 0,002 89 0,960 32 0,000 10 

8 -0,111 7 0,019 15 0,960 12 0,000 10 

9 -0,096 7 0,017 80 0,960 20 0,000 10 

10 0,000 0 0,002 89 0,959 94 0,000 10 



Table 3. Measurement data used in GM, OLS and WLS-LM 
methods 

β̂ β̂u (k=1)  u (k=1)    
(mg) (mg)  (mg)  (mg) 

500 g The results of each method were compared with the 
results obtained by numerical simulation. The mathematical 
model used in the simulation is the same as its 
corresponding matrix solution method. All the simulations 
were performed with one hundred random data coming from 
each probability distribution of the input quantities (they 
were considered normal distributions). 

4.  NUMERICAL EXAMPLE: RESULTS 

4.1 Estimated mass values and uncertainties 
The results obtained with the matrix solution and with 

the numerical simulation for each method are presented in 
tables 4 to 7. Figures 2 to 6 show the results for each 
calibration weight. Each colour represents the solution 
method, where the first result corresponds to the numerical 
simulation and the second is the matrix solution by the 
generalization of the GUM. 

4.2 Correlations of the calibration weights. 
Except for the GM method, the methods studied in this 

work do not have a complete covariance matrix because 
only type A uncertainty due to error adjustment is 
considered. However, in the estimated mass values by 
NSMC it is possible to obtain the linear correlation 
coefficients from the one hundred data outputs. Tables 8 to 
11 show the estimated correlation coefficients from the 
NSMC of each method. Table 12 provides the correlation 
coefficients obtained by the covariance matrix (18) of GM. 

 
 

Simulación Matricial 
Pesa β̂  

 (mg) 
u (k=1)  

(mg) 
β̂  

(mg) 
u (k=1)  

(mg) 
500 g -0,118 0,029 -0,118 0,014 
200 g 0,009 0,025 0,009 0,008 

200 g * -0,012 0,025 -0,012 0,008 
100 g -0,039 0,006 -0,039 0,007 
100 g -0,159 0,007 -0,159 0,007 

Table 4. Results of the Orthogonal Method. 
 
 

Table 5. Results of the WLS-LM Method. 
 

Pesa Simulación Matricial 

-0,118 0,029 -0,118 0,032 
200 g 0,007 0,025 0,007 0,018 

200 g * -0,010 0,025 -0,010 0,018 
100 g -0,052 0,007 -0,052 0,017 

100 g * -0,146 0,007 -0,146 0,017 
Table 6. Results of the GM Method. 
 
 

Simulación Matricial 
 

β̂ β̂u (k=1)  u (k=1)  Pesa   (mg) (mg) (mg) (mg) 
500 g -0,118 0,029 -0,118 0,023 
200 g 0,007 0,025 0,007 0,013 

200 g * -0,010 0,025 -0,010 0,013 
100 g -0,048 0,007 -0,048 0,013 

100 g * -0,150 0,007 -0,150 0,013 
Table 7. Results of the OLS Method. 
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Figure 2. Comparison among values for 500 g weight.   
Uncertainty bars are with k=1. 
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500 g 

 

Figure 3. Comparison among values for 200 g weight.   
Uncertainty bars are with k=1. 

-0,117 0,029 -0,117 0,031 
200 g 0,000 0,025 0,000 0,016 

200 g * -0,004 0,025 -0,004 0,016 
100 g -0,060 0,006 -0,060 0,020 

100 g * -0,138 0,007 -0,138 0,020 
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Figure 4. Comparison among values for 200 g* weight.   
Uncertainty bars are with k=1. 
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Figure 5. Comparison among values for 100 g  weight.  
Uncertainty bars are with k=1. 
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Figure 6. Comparison among values for 100 g * weight    
Uncertainty bars are with k=1. 

 

 500 g 200 g 200 g * 100 g  100 g * 
500 g 1,00 0,11 0,12 0,22 0,20 
200 g  1,00 0,06 0,07 0,05 

200 g *   1,00 0,07 0,07 

   1,00 0,43 
100 g *     1,00 

Table 8. Correlation coefficients among weights for NSMC 
with the Orthogonal method. 
 

 1 000 g 500 g 200 g 200 g * 100 g 100 g * 
1 000 g 1,00 0,26 0,12 0,12 0,23 0,22 
500 g  1,00 0,12 0,13 0,24 0,23 

200 g   1,00 0,08 0,05 0,05 

200 g *    1,00 0,05 0,05 
100 g     1,00 0,86 

100 g *      1,00 

Table 9. Correlation coefficients among weights for NSMC 
with the WLS-LM method. 
 
 
 

 1 000 g 500 g 200 g 200 g * 100 g 100 g * 
1 000 g 1,00 0,26 0,12 0,12 0,22 0,21 
500 g  1,00 0,13 0,13 0,23 0,22 
200 g   1,00 0,07 0,05 0,05 

200 g *    1,00 0,05 0,06 
100 g     1,00 0,59 

100 g *      1,00 

Table 10. Correlation coefficients among weights for NSMC 
with the OLS method. 
 

 1 000 g 500 g 200 g 200 g * 100 g 100 g * 
1 000 g 1,00 0,26 0,11 0,12 0,23 0,22 
500 g  1,00 0,12 0,13 0,24 0,23 
200 g   1,00 0,06 0,05 0,05 

200 g *    1,00 0,06 0,06 
100 g     1,00 0,77 

100 g *      1,00 
Table 11. Correlation coefficients among weights for NSMC with 
the GM method. 
 

 1 000 g 500 g 200 g 200 g * 100 g 100 g * 
1 000 g 1,00 0,50 0,34 0,35 0,19 0,19 
500 g  1,00 0,24 0,24 0,13 0,13 
200 g   1,00 0,17 0,04 0,04 

200 g *    1,00 0,05 0,05 

100 g     1,00 0,29 
100 g *      1,00 

Table 12. Correlation coefficients among weights for the 
GM method matrix solution. 

 

4. DISCUSSION 

The difference among the estimated mass values 
obtained with the different matrix solution methods are 
within the combined uncertainty at confidence level of 



approximately 95% (normalized error). The difference in the 
estimated mass values by solving matrix equations exists 
due to that in GM and WLS-LM methods the yi data are 
being weighted; in the other hand, Orthogonal method uses 
a different design matrix. However, the estimated mass 
values obtained with the different methods do no differ 
significantly [6,9]. The estimated mass values obtained with 
NSMC are agree with their corresponding matrix solution, 
however, the uncertainty evaluation is different from the 
matrix method (GUM generalization). 
 

The mass values obtained from SNMC are equal to those 
values obtained from the matricial method; however there 
are significant differences between the matricial estimation 
of the uncertainty and SNMC estimation of uncertainty.  

 
 The uncertainty values calculated with SMNC are the 

same between all the tested methods.  
 
For the 500 g weigh the estimated uncertainties for 

MCP-ML and GM are almost the same compared to SNMC, 
however there is an underestimation for the 200 g, and an 
overestimation for the 100 g weighs compared to its SNMC.   

 
The MCO method underestimates the uncertainty of the 

500 g and 200 g weighs. And overestimates the uncertainty 
compared with the SNMC  

 
The Orthogonal method underestimates all the weighs 

values but the 100 g in relation to SNMC. 
 
The correlation coefficient for the 100 g and 100 g*, 

obtained from the matricial GM gives 0,29 in comparison 
with the value obtained in SNMC 0,77 , which is 
significantly different.  
 

The correlation coefficients between the 100 g weighs, 
obtained from the SNMC for orthogonal model is 0,43. The 
lowest coefficients obtained were in this method.  

 
The correlation coefficients between the 100 g weighs, 

obtained from the SNMC for MCP-ML model is 0,86. Thus 
implies a highly lineal dependence between these weighs.  
 
 

5. CONCLUSIONS. 

The most commonly matrix solution methods used in the 
NMI’s in the calibration of weights by subdivision method 
and the comparison against their numerical simulation by 
Monte Carlo’s method were studied in this work. 

 
The best estimated mass values obtained both by NSMC 

and by matrix solution methods do not differ significantly 
from one to another.  

The uncertainty calculated by the NSMC differs from the 
calculation by the matrix methods in higher or lower degree 
of impact, but indeed differs from the matrix calculation.  

 

The uncertainty values obtained by NSMC for all the 
mathematical models (Orthogonal, OLS, WLS-LM and 
GM) are almost the same, meaning that probability 
distributions of the input quantities propagate in the same 
way no matter the method employed.  

 
The SNMC gives the possibility of calculate the 

correlation between mass values. The traditional orthogonal 
method don not allows it, because the method only estimates 
the Type A correlation, and thus if the correlation of the 
design matrix is zero the resultant correlation will be zero. 

 
In conclusion, the authors recommend calculate 

estimated values of vector β   and their associated 
uncertainties using the numerical simulation by Monte 
Carlo´s method of the GM matrix equation. 

 
For the same nominal values of mass there are no 

significantly differences between SMNC and GUM 
generalization (Matricial methods) [10], however for the 
subdivision are different, and it could be because the 
configuration of the design matrix 
 

In conclusion, the authors recommend calculate 
estimated values of vector β   and their associated 
uncertainties using the numerical simulation by Monte 
Carlo´s method of the GM matrix equation. 
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