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Abstract − Reported here are some results obtained, 

from a calculus algorithm application that, based on known 
equation analytical solutions of water flow profiles, allows 
the study of steady-state, gradually varied flow in open 
channel networks. The procedure allows to calculate, in the 
case of slow water flow into gradually downward slope 
channels, in the direction of motion, the florates and water 
levels respectively, in all the nodes and sides of the network. 
The results have been compared with the solutions proposed 
by other authors.  
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1. THEORETICAL MODEL 

The hydraulic calculation to verify and design the open 
channel networks are usually based on the hypothesis that 
the water discharge of each network element diffuses in 
constant motion conditions.  

This hypothesis doesn’t really conform to the real liquid 
movement conditions, rather a more adhering evaluation of 
the hydraulic reality phenomenon established in the 
networks which should foresee going back to the varied 
motion equations.  

For incompressible liquids these latter are reduced to 
continuous movement equations. Together they are a 
differential equation system to the partial derivates that, 
excluding very few particular cases, defined by drastic 
simplifications with respect to real phenomenon, don’t give 
finite term solutions.  

The difficulties met in the water flow study in unsteady-
state, are found not only in the analytical problem to prevent 
solutions of word equations, but mostly in defining proper 
limit and initial conditions. 

Initial conditions, in particular, are defined by steady-
state situations existing before the varied regimes takes 
place: then, for their definition, it’s necessary to point out 
the discharges and the water surface in all network elements. 

The definition of these latter, in some conditioning 
hypotheses on which we’ll return to in the future, has been 
obtained in [1]. 

The algorithm proposed is based on known analytical 
solutions of the water flow profile obtained by [2] and by 
[3].  

The physical model is made up of  an open channel 
network in which diffuse assigned discharges (measurable 

through instruments) and where the boundary conditions 
will be the water levels recorded at the extreme channel 
ends. 

  
2. WATER SURFACE PROFILES TRACING 

The resolving procedures leading to steady-state flow 
profile tracing, gradually varied, flowing at a constant Q 
flowrate in cylindrical channels, are seen in the integration 
of the differential equation [4]: 
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The hydraulic calculations to verify and design open 
channel networks are usually based on (1) being: h flow 
depth in a generic section, if  slope of channel bottom 
(constant); J(h) energy dissipation (per weight and path unit) 
due to the sole resistance of  friction; 
Ω( ) /h Q l g= α σ2 3 ; α the Coriolis co-efficient (later 
considered constant and equal to 1 ); l the width of water 
section of height h; g acceleration of gravity; s measured 
distance along channel access from the section taken as the 
origin (positive in the direction of movement).     

The equation solution in finite form (1) can be obtained 
only for channels in which the transversal sections is of such 
form that between areas σ and corresponding heights h  the 
monomials relation exists   

σ = bhn                 (2) 
In practical terms (2) is satisfactory due to the almost 

completeness of the sections used in the open horizon 
channels within the approximation limits normally allowed 
in such kind of a problem: the only exceptions are given by 
the closed limit sections used in the underground 
channelling [3], [4].  

The law of resistance, generally expressed by the 
relation of the type: 

J f R S= ( , , , , , )ψ ρ μ υ  (3) 
where ψ is one or more parameters characterising the 
channel section shape, R the average radius, S one or more 
parameters characterising the wall roughness, ρ and μ  
liquid density and viscosity, v the average flow velocity – 
can be specialised in the monomial relation : 

Q kh Jp q=   (4) 
where k indicates a dimensional parameter, essentially wall-
natured and parameter dependant, defining the channel 



transversal section form. Under these conditions, the 
differential equation (1) can be integrated [2],[4]. 

Considering (2) and (4), (1) becomes: 
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where the terms: 
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represent, respectively, height hu of uniform movement and 
height hc  of critical state, both related to discharge Q.  

Replacing these expressions in (5), separating variables 

and imposing: 
uh

hz =   [1] is obtained, general integral of 

(5): 
where z<1 
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where z>1 
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     (7) 
where constant c = c1+c2  defined by limit conditions. 

Equations (6) and (7) deduced from  [4] through non-
quadratic resistance laws defined in (5) are particular in 
solution [2] when q=1/2, obtaining:  
where z<1 
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where z>1: 
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When discharge Q is assigned in considered channel 

section, distance l separating two water sections in which 
known water levels values h1 = z1hu e h2 = z2hu (linked by a 
continuous water profile), is given by:  
for z<1 
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for z>1 
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In general, 12 and 13 can be placed under generic form: 
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for z>1. 
  

                       
Eq. (14) can be used both for obtaining water levels h2(or 

h1) when Q, l, h1(oh2)  are assigned, and for calculating 
regular regime depth hu and, then, discharge Q – when l, h1 
and h2  are assigned: we’ll have to obtain equation solution: 
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3. CHANNEL NETWORKS 
 

Eq.(14) allows to easily calculate distance l separating 
two water levels h1 and h2 when the discharge is known. 
Moreover, It allows the determination of discharge Q in a 
cylindrical channel  when water levels h1* and h2* are 
assigned at the extreme channel endings, together whit the 
separating distance l. 

 This is the start for perfecting the calculus algorithm in 
verifying channel network. 

 For a general model, a channel network can be 

considered made up of 
~l  sides (channel sections of regular 

roughness form) and ~n  nodal points ( points where three or 
more channels converge, or points of the same channel 
where there’s a sudden change of section, wall roughness, 
bottom, slope, discharge,  etc.) 

We’ll call: side borders, sides to which are assigned, at 
one end, at least a border condition (water level value, or 
 allowed or derogated discharge)  and internal sides, the 
remaining; the same distinction’s true for nodes. 

 We’ll call: walk or path, any open polygon made up of 
consecutive sides belonging to branching, having an end in a 
border node, and the other end in any other node (internal or 
border). 



 For each side an initial and final node’s defined and, 
then, a conventional flow pattern. 

 Without regulating and measuring devices, expanding 
basins, mechanical relief implantations, until steady-state 
motion is completely known, it’s necessary to know 

piezometric values of each ~n  node and discharge in 
~l  

sides. 
If ~' ~n n≤  a number ofis unknown piezometric values 

and 
~' ~l l≤  of unknown discharge, the corresponding 

mathematical model’s:  

    
~l  movement equations (type eq. (14)) 

    ~n ’ nodal equations. 
These latter are reduced to the equation expressing 

discharge continuity for each node, and to these are 
associated other defining conditions to define according to 
flow type ( sub critical or supercritical) and to node 
typology. 

 The extensive variety of possible situations doesn’t 
allow for an effective topic synthesis. 

  Here, we pay attention to slow discharge flows, 
gradually varied, in open network channels, in the direction 
of the motion; the definition of the condition to associate to 
the continuity equation has been obtained assuming that on 
the nodal points constituted from the union of two or more 
channels, the kinetic heights merely differ, and local node 
charge loss needn’t be considered. [5] 

  Such hypotheses are specialised according to the 
situation drafted in fig. 1a in the absence of allowed or 
externally derogated discharge, in the relations:  
                           Q Q Qj j j− − =+ +1 2 0                     (19a) 

                             y yj k j k, ,− =+1 0                             (19b) 

                             y yj k j k, ,− =+2 0                            (19c) 
and for situation  drafted in fig.1b. in the relations: 
                         Q Q Qj j j+ + ++ − =1 2 3 0                    (20a) 

                        y yj k j k+ +− =1 3 0, ,                           (20b) 

                y yj k j k+ +− =2 3 0, ,                           (20c) 
having indicated with:  
y h zi k j k f j k, , ,

= +  and with z f j k,
 (and analogous), 

respectively, the piezometric value and the bottom value 
with respect to a horizontal reference in node k believed to 
belong to side j.              
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For an open network characterised by ~' ~n n≤  nodes of 

unknown piezometric value, one obtains a system formed by 
~′n  equations expressing the continuity of nodal discharges. 

The solution of this system can be obtained with 
iteration procedures. 

Therefore, even when in all the network sides, the 
necessary conditions are found for gradual movement in the 
direction of decreasing bottom values, application of these 
procedures can cause operational difficulty.  

  To reduce such difficulty one must observe that various 
network nodes depend among themselves, since not all 
unknown ~′n  water heights can be randomly assigned; until 
gradual movement in all network sides is respected it’s 
necessary that unknown water heights values are within 
interval (hmin, hmax) depending on the sides’ geometric and 
hydraulic characteristics, and through conditions given in 
external nodes. 

 In pointing out this last question, network side j with 
node I border end is examined, for example, and other end 
in internal node k (fig.2). 

                  

i
j

k

h
i

h
k
*

i
f

 
 

 Fig.2 
In side j discharge Qj ≠ 0 for major and minor hk

∗ 

values, being h h i lk i f jj

∗ = + hk=hi+il. 

Conditionsh hk k> ∗  and h hk k< ∗   are respectively 
relative to delayed slow flows in channels with a deep slope, 
and to delayed slow flows or accelerated flow, in channels 
having a slight slope. 

In discerning flow type assume h hi c= ; from relation 

[ ] )12/(122 / +
= jn

jjc gbnQh
, Qj  value’s seen and then the 

value of ( )[ ] j

j

pq
jjju ikQh /1/= . 

If h hc u>  (deep slope channel) max value h hk kmax
> ∗  

assumed by water level under imposed conditions, it holds 
introducing in (14), that Q l hj j i, , . Min value hkmin

= hu . 
Here hk variation interval is between [hu,hkmax]. 

 
If h hc u<  (slight slope channel), min value hkmin

 
assumed by unknown water level under assigned conditions, 
a critical state condition is determined, imposing in k, or 
rather searching for value h hk i< , giving max compatible 
flow under imposed conditions. Max value’s determined for 
hk

*.  hk  variation interval results between [hkmin,hk]. 
One works with the same procedure when I’s the internal 

node and k the external one, or when in internal node k 



converge external sides r. Here, in each side 

( )h hk
j

k
j

min max,  intervals are defined, with 

{ }j r∈ 1, where: 

{ }h hk k
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It’s a different situation for internal nodes linked to 
others belonging to border sides. In general for these it’s not 
possible to find one interval in which to continuously vary 
water level values. Then, once a first position value  is 
assigned in a chosen internal node of a border side, water 
level values in other internal nodes externally linked are 
defined. 

In pointing out such a question a channel network’s 
examined (fig.3), made up of  concurring branches in node 
D linked to border H, in correspondence to which water 
level hH ’s assigned. 
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Fig.3 
 

For a given value hB  of the B water level it’s defined: 
with (17), diffluent discharge in border sides having end B; 
based on continuity, discharge Q in side BD; based on (17), 
water level hD . 

In internal node E, value hE  depends, then, both on 
conditions imposed in border nodes F and G, and by water 
level hD . Such conditions allow for defining water level hE  
and discharge in side ED which respects nodal continuity. 

This observation’s the starting point of a calculus 
algorithm for verifying branch networks. 

Let’s again consider the schematic situation in fig.3. 
The numeric procedure starts assigning, to water level in 

B, a first position value hB
( )1 . 

   Having introduced such a value in (17), discharge in 
sides AB and CB are calculated and, for continuity, 
discharge in BD. This latter put in (17) determines hD  and, 
even if slightly dealt with above, water level in E and 
discharge in sides FE, GE, ED. 

Continuity condition in node D permits the 
calculation of both diffluent discharge in side DH, and water 
level hH

( )1 , to compare with value hH  imposed in the same 
node. 

 Indicated thru λ = −h hH H
( )1  the absolute assumed 

value from the difference between the calculated water level 
and that given in H, if it results in 1 being greater than a 
prefixed approximation, the procedure’s repeated starting 
from a new value hB

( )2  automatically taken through a 
dichotomy method. 

 
4. APPLICATION IN A CHANNEL NETWORK 
 
The procedure shown has been applied in resolving the 

verifying problem in channel network shown in Fig. 4. 
              

 

                                           Fig.4 

The network’s formed by 8 trapezoidal channels 
(1.5H:1.0V), with α=1, of whose characteristics are reported 
in tab.1. In all channels flow’s subcritical, arrows indicating 
flow direction. Extreme conditions in valley node (node F) 
are given by hF=5.0 m and Q=250m3/s. 
 
channel length(m) width(m) reach(m) n=1/k k if

1 200 30 50 0.0130 76.92 0.005 
2 200 40 50 0.0130 76.92 0.005 
3 200 20 50 0.0120 83.73 0.005 
4 100 20 25 0.0140 71.43 0.005 
5 100 20 25 0.0130 76.92 0.005 
6 100 25 25 0.0130 76.93 0.005 
7 100 30 25 0.0140 71.43 0.005 
8 300 50 75 0.0140 71.43 0.005 

 
Table 1. Input data for channel network example             
 
In table 2 border nodes water height values assigned 

are reported and for internal nodes, hmin and hmax  values 
deduced according to the above obtained. 

 
Node h (m) hmin (m) hmax (m) 

A - 0.6 9.9 
B - 1.8 8.1 
C - 2.7 6.95 
D - 1.8 6.35 
E - 3.8 5.9 
F 5.00 - - 

Table 2 
 

 In table 3, water level values relative to h internal nodes 
of each channel, water level values in internal points in each 
channel, and the various channel discharge  distribution 



obtained in the described procedure, and the values shown 
by [5] are reported. 

We have indicated in h* and Q*    with [5] calculated 
values, and h and Q values calculated with the described 
algorithm .  
 

 section distance(m) h(m) h*(m) 
Channel 1 
Q =104.8056 m3/s 
Q*=104.9785 m3/s 

1 
2 
3 
4 
5 

0 
50 
100 
150 
200 

2.4567 
2.7184 
2.9771 
3.2335 
3.4886 

2.4553 
2.7176 
2.9767 
3.2336 
3.4889 

Channel 2 
Q =145.1931 m3/s 
Q*=145.0214 m3/s 

1 
2 
3 
4 
5 

0 
50 
100 
150 
200 

2.4529 
2.7164 
2.9763 
3.2337 
3.4896 

2.4405 
2.7047 
2.9651 
3.2230 
3.4791 

Channel 3 
Q =59.0052 m3/s 
Q*=59.6867 m3/s 

1 
2 
3 
4 
5 

0 
50 
100 
150 
200 

3.4886 
3.7412 
3.9933 
4.2450 
4.4964 

3.4982 
3.7510 
4.0033 
4.2552 
4.5067 

Channel 4 
Q =45.7899 m3/s 
Q*=45.2919 m3/s 

1 
2 
3 
4 
5 

0 
25 
50 
75 
100 

3.4913 
3.6170 
3.7486 
3.8682 
3.9937 

3.5101 
3.6359 
3.7616 
3.8872 
4.0128 

Channel 5 
Q =51,7511 m3/s 
Q*=51.0382 m3/s 

1 
2 
3 
4 
5 

0 
25 
50 
75 
100 

3.9941 
4.1198 
4.2454 
4.3711 
4.4964 

4.0077 
4.1334 
4.2590 
4.3846 
4.5101 

Channel 6 
Q =5.9498 m3/s 
Q*=5.7463 m3/s 

1 
2 
3 
4 
5 

0 
25 
50 
75 
100 

3.4937 
3.6187 
3.7437 
3.8687 
3.9937 

3.5222 
3.6472 
3.7722 
3.8973 
4.0223 

Channel 7 
Q =110.7571 m3/s 
Q*=110.7249m3/s 

1 
2 
3 
4 
5 

0 
25 
50 
75 
100 

4.4964 
4.6224 
4.7483 
4.8742 
5.00 

4.4916 
4.6177 
4.7437 
4.8696 
4..9954 

Channel 8 
Q =139.2432 m3/s 
Q*=139.2751 m3/s 

1 
2 
3 
4 
5 

0 
75 
150 
225 
300 

3.4897 
3.8684 
4.2462 
4.6233 
5.00 

3.4905 
3.8694 
4.2473 
4.6246 
5.0013 

 
Table 3. Discharge and flow depths for channel network example 

 
The comparison of the solutions obtained, allows 

assertation that the algorithm described, in sub critical flow, 
correctly responds and then can be considered a valid tool 
for such a study, showing in conclusion that gradually 
varied flows in open channel networks can be analysed 
directly at the computer. 

 In another note, results obtained through experiments 
will be reported. 
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