
XIX IMEKO World Congress 
Fundamental and Applied Metrology 

September 6−11, 2009, Lisbon, Portugal 

 
DESIGN AND EVALUATION OF EXPERIMENTS WITH SAS® 

 
Adriana Horníková 1 

 
1 University of Economics in Bratislava (Faculty of Economics Informatics, Institute for Statistics), Dolnozemská 

cesta 1/b, 853 25 Bratislava, Slovakia, e-mail: ahornik@euba.sk 
 
Abstract − Design of experiments is a theory that can 

not be neglected in any technical education as well as in 
applied statistics or economics education. For longer than a 
year lasted a project aiming to publish a new book in Slovak 
language entitled Design of Experiments with SAS. This 
book of eleven Chapters combines theoretical knowledge in 
the scientific area of design and evaluation of experimental 
results with application of SAS® statistical software.  

A model of a simple strategy for design of experiments 
starts with description of a problem, choosing an appropriate 
design with responses and factors, collection of 
experimental data which is followed by fitting of an 
appropriate model that can be used for predicting.  

Keywords: Design of Experiments, Evaluation of 
Measurements, SAS Statistical Software. 

1.  INTRODUCTION TO DESIGNING WITH SAS 

In winter term 2008/09 was in Slovakia at the 
University of Economics in Bratislava developed and taught 
a new lecture Design of Experiments and their Evaluation 
(abr. NAVEX). For students support, but also for other 
interested readers and scientists a new book with the same 
title was prepared and will be published. To enhance 
knowledge of this book practical applications with SAS 
statistical software were selected to support numerical 
examples.  

The whole theoretical and practical knowledge of the 
book is given as a compact approach. Starting with a short 
introduction detailing how is defined the design of 
experiments through out various literature and giving the 
engineering strategy on solving problems by making use of 
the design of experiments approach [3]. All definitions 
throughout the entire book are in compliance with the valid 
technical standard ISO 3534 part 3 [1]. 

SAS system is a typical modular system with several 
possibilities for designing an experiment. Design dedicated 
module of 12 platforms is called SAS JMP® (Fig. 1.). It 
enables data analysis of various kinds of variables, like 
ordinary, continuous up to quality control statistical tools, 
e.g. Shewhards´ diagrams, etc. One platform is dedicated to 
creating and evaluation of different types of designs of 
experiments. This design platform comprises of 10 sub-
platforms, which are: 
• screening design platform suitable for the first start with 

a design problem, 

• custom design platform suitable for creating designs 
with specifications, 

• response surface design platform for creating designs 
with models of higher order response surface terms, 

• nonlinear design platform for non linear problems, 
• space filling design platform with special functions, 
• full factorial design platform for factorial designs, 
• Taguchi design platform for designs with inner and 

outer arrays, 
• mixture design platform for designs with mixture 

requirements, 
• augment design platform suitable to add centre and 

axial points to a design or to fold over a design, etc. 
• sample size and power platform [9].  

 

Figure 1. SAS JMP® system, separate module - starter window. 

Separate functions can be also found in SAS Enterprise 
Guide, mainly functions for one way analysis of variance 
(ANOVA) with a not parametric alteration (Kruskal-Wallis 
test) and generalized linear models fitting (function GLM). 
For analysis of data sets not meeting the homoscedasticity 
requirement is available the Welch´s variance weighted 
ANOVA test. 

Another module incorporated in the SAS Foundation is 
the ADX Interface (Fig. 2). It has enhanced capabilities for 
designing experiments and comes with the SAS QC (Quality 
Control) module. For programming interested, QC module 
has functions for quality control and other statistical 
technical applications and computations as well as four 



functions relating to statistical design of experiments 
(PLAN, FACTEX, OPTEX, ANOM) [6-8]. 

 

Figure 2. The ADX Interface starting window with data. 

2.  STEPS FOR DESIGNING AN EXPERIMENT 

The overall engineering strategy of using the theory of 
design of experiments can be very simplified described in 
the following five steps. First comes the description of the 
problem under consideration, followed by designing a 
comprehensive experiment, realization of it and then based 
on creating a suitable statistical model with appropriate 
analysis and the analyzed problem evaluation and 
interpretation represent the solution. Very often not just 
statistical computational methods, but also graphical 
representation is used for data evaluation. Next a prediction 
for a new observation or treatment can be made and 
experimentally proven.  

 

Figure 3.  Screening design platform, input window for defining 
responses and factors accompanied with designs´ proposal in 

window part Choose a Design. 

Not loosing on generality the design of experiments can 
be described in several steps: 
• selection of responses, factors, their kinds and levels, 

blocks, defining experimental space and constrains;  
• determine interaction terms, sample size, repeats, 

qualities of the proposed design (orthogonality, 
rotatability, optimality, etc.), see Figure 3; 

• gather experimental data and analysis of results, if 
needed predict [9]. 

System SAS JMP® provides the user with different 
types of factors. They can be continuous that is that they are 
exclusively numeric data types. Continuous factors have 
values defined by lower and upper limits. Categorical 
factors can be either numeric or character that is ordered by 
numeric magnitude or sorting sequence. Blocking factors 
are similar with categorical factors, but the number of runs 
is limited. Covariate factors are not controllable, but their 
values are known in advance. Mixture factors are continuous 
factors that are ingredients in a mixture. Constant factors do 
not change their values during the experiment. Uncontrolled 
factors have values that can not be controlled during the 
experiment, but in the same time these are factors that 
should be included in the model [3, 9]. 

2.1. One factor designs  
First Chapter is dedicated to one factor experiments. 

Introducing analysis of variance with several tests, like 
equality of variances test (homoscedasticity test), normal 
distribution requirement proof, testing of residuals up to 
multiple comparison after rejecting the null hypothesis of 
equality of the response mean values for all levels of the 
tested factor. More important from the point of view of the 
design is to properly distinguish between fixed and random 
factors. Such definition of a factor is based on the technical 
knowledge or experimental experiences.  

In general after the decision on kind of used factor in the 
design was made, the appropriate model is mostly given. 
Throughout the entire book are used linear additive models. 
The model of one factor designs consists of a general mean 
value which is constant (�) plus one factor called A and the 
independent random errors (�ij). All these terms added 
together build the parametric model of response, here yij in 
(1), when the requirement of normal distribution of random 
errors in (2) and the homoscedasticity of variances in (3) are 
met, as follows 

 ijiijy εαµ ++=  (1) 

when 

 ( )2,0~ eij N σε  (2) 

Factor itself can be of two kinds. They can be fixed, so 
called fixed factors. Lets assume a balanced one factor 
experiment (3) 

 nnnn a ==== ...21  (3) 

with in being the sample subset size for a given level of the 

fixed factor A. In this case the factor A is defined with a 



different fixed levels ( ai ,...,2,1= ) that are designated in 

the model (1) as iα . An example of a fixed levels factor 

could be a factor defining the concentration while producing 
paper and the response variable is the strength of the paper.  

If response is statistically significantly different for 
different levels of factor A, we can declare such factor A 
being influential on the response. The statistical hypothesis 
testing to decide on this issue is based on the null hypothesis 
that assumes equal influences at different factor levels on 
the response. For a factor with fixed levels, this test would 
be as follows 

 aH ααα === �210  :  

 jiH ji ≠≠  ofpair  onefor least at   :1 αα  (4) 

This technique, testing according (4), is called multiple 
comparison test. Its aim is to prove different response 
variable values at different factor levels of factor A. There 
are several methodologies how to approach this problem. A 
simpler strategy is to compare pairs of means of subsets and 
decide based upon the result (e.g. Each Pair Student´s test). 
Slightly different situation is when the means of subsets 
have to be compared with a given constant (e.g. Dunnet´s 
multiple comparison test). More sophisticated approach is to 
compare all means of subset at once by linear equations. In 
this case we speak about linear contrasts (All Pairs Tukey-
Kramer test or Best Hsu´s MCB test). These results can be 
easily graphically presented in the form of diamonds graph 
or circles diagram for multiple comparison tests, as is shown 
in fig. 4, using different colours and thickness of the line for 
distinguishing between groups as well as groups against the 
nominal value.   

 

 
 

Figure 4.  Multiple comparison test with fixed factor of four levels. 
 
Every subset mean value follows normal distribution (5) 
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where .iy  is the average of all observations in the ith group 

and the variance 2σ is estimated using the EMS  statistic. 
The model (1) assumes also equal variances in subsets, these 
are build based on the equal factor level. To test the equality 
of variances (6), this  quality is called homoscedasticity use  

 22
2

2
1 aσσσ === �  (6) 

The SAS JMP system offers three tests, the Bartlett´s test, 
Brown-Forsythe´s test and Levene´s test. 

The parameters estimation in the model with one fixed 
factor is limited. Generally there is no unbiased estimate of 
the overall mean value µ neither of the ith-factor level iα , 

but a simple approximation uses the overall mean    

 ..ˆ y=µ  (7) 

An estimate of the difference at two different factor levels is  

 ...ˆˆ yy iji −=−αα   for ai  , ,2 ,1 �=  (8) 

Very often is part of the evaluation estimation a confidence 
interval (9) for the subset mean value on the i th level of the 
fixed factor with the 100(1-α ) % confidence  

 ( )
n
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where ( )aNt −− 2/1 α  is the ( )21 α− -quatile of t-Student´s 

distribution with aN −  degrees of freedom and N is the 
number of all observations, here equals to N = an. 
 The overall model significance is tested based on the 
comparison of the model explained variability with the 
residual variability. These variabilities are independent and 
add up to the total variability of the response (10), here the 
variability expressed in the form of sum of square (abr. SS) 

 EAT SSSSSS +=  (10) 

while the test statistic (11) is based on the two sample 
variance equality test 
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where the null hypothesis states that the whole model is 
insignificant and the alternative hypothesis defines the 
model as significant. If the inequality in (12) is true, the null 
hypothesis is being rejected and the model by ANOVA test 
is declared significant 

 ( )aNaFFtest −−> − ,1 1 α  (12) 

  

 
 

Figure 5. The SAS JMP®  system’s one-way ANOVA window.  
 



2.1.1. Random effects 
The second possibility for the factor declaration is to be 

random, in which case factor B is defined by variance 2
βσ  

(15). Let’s assume the following statistical model (13)  

 ijiijy εβµ ++=  (13) 

and independent random errors normally distributed 

 ( )2,0~ eij N σε  (14) 

and random factor 

 ( )2,0~ βσβ Ni  (15) 

The variance for each observation is  

 ( ) 22Var σσ β +=ijy  (16) 

where sigmas squared in (16) are called variance 
components and then the overall model is called the model 
with variance components. Prerequisite requirements of the 
model (13) are  

 ( ) 0,cov =ji ββ  for all  ji ≠   

 ( ) 0,cov =jki εβ  for all  i, j, k  

 ( ) 0,cov =klij εε  for all  ki ≠   

 ( ) 0,cov =ilij εε  for all  lj ≠  (17) 

An example of a random effect is when different children 
have different starting point, when approaching to study 
their reaction. Then testing the significant influence of a 
random factor (defined in compliance with (15)) one can 
proceed with a hypothesis test (18) as 

 0: 2
0 =βσH  

 0: 2
1 >βσH  (18) 

Results of factor significance on response from the 
influence test (in (4) or (18)) and the overall significance of 
the model itself, are summarized in ANOVA table which 
comprises of these columns: title of the source of variability, 
sum of squares, degrees of freedom, means of squares, F-
test and p-value. ANOVA tables are nowadays used in this 
standard format. Other statistics that accompany ANOVA 
model are R-Square, coefficient of variation or Root MSE.  

Subsequent testing of residuals for normality can be 
done by several statistical tests. To list several widely 
spread, one can mention the Shapiro-Wilk´s, the 
Kolmogorov-Smirnov´s, the Cramer-von Mises´s or the 
Anderson-Darling’s tests. Graphical approaches are often 
used in the form of probability plot, quantile plot or 
histogram. In the case of residuals are not normally 
distributed these parametric approaches of evaluation can 
not be used and data has to be re-evaluated by non-
parametric tests. 

2.1.2. Power and sample size 
The second Chapter of the monograph continues the first 

Chapter with computations of sample size (n), power (1-�) 
and significant difference (�). Available is also a 
computation of sample size for detecting a change in 
difference at significance level (�). SAS JMP system 
enables plotting of operation curves for different 
combinations of the probability of the error of the first kind 
(�), the probability of the error of the second kind (�), power 
(1-�) and significant difference (�). This is valid if the 
normal distribution assumption is met, but for any other 
distribution the SAS JMP system seeks a proper way to 
approximate it with a normally distributed random variable 
[9-10]. 

2.2. Designs with blocking factor 
In the third Chapter blocking is added to designs. 

Simplified one can say that a factor is organized in blocks 
when we assume not full randomization of treatments and 
we introduce a block structure to the data sets observed. 
This is mostly captured in the model by a fixed factor 
without interactions with other factors within the model, 
even though this model could be adjusted also for 
interactions. 

2.3. Two factor designs 
Two factor designs are simple enough to explain the 

possibilities to combine the fixed and random factors using. 
Also the principles of interaction and design qualities can be 
presented to the reader. Three different two factor designs 
are presented in the monograph.  

2.4. Square designs 
Typical multi-factor designs with factors having several 

levels are lattice designs, Latin square designs, Greco-Latin 
square designs or Youden square designs. All these designs 
assume no interaction between factors. All basic designing 
principles like repetitions, randomization or balancedness  
are explained.  

2.5. Multi-factor designs 
Further in the subsequent Chapter is explained the full 

factorial design with interactions and effects estimation. 
Later is detailed the principle of reducing a full factorial 
design based on the generating relation and finding the 
confounding of a reduced factorial design. Design resolution 
principle is also explained. In this Chapter are four 
applications solved using the SAS JMP® system. 

The model consists of a mean value which is assumed to 
be constant (�), fixed factors A & B (�i, �j, with ai ,...,2,1=  
and bj ,...,2,1= ), their interactions (��ij) plus independent 
random errors (�ij). All terms model the response, here yij in 
(19), when the requirement of normal distribution of random 
errors in (2) or (14) are met 

 ijijjiijy εαββαµ ++++++= ......  (19) 

One important conclusion from experimentation is whether 
either the main factor or interactions influence the response. 



In full factorial design k2 , a design with k fixed two level 
factors,  is the main factor A effect Aλ  estimated  

 −+ −= AAA yyλ̂  (20) 

where +Ay  and −Ay  are averages of observations at factor 
A levels respectively. In the same way are estimated main 
effects of other fixed factors. The estimate of interaction 
between factors A & B is  

 ( )
2

ˆ −−−++−++ −−−
= BABABABA

AB

yyyyλ  (21) 

where ++BAy  is the average of observations at the factors 
level A+B+. Sum of squares can be easily computed from 
factor main effects and interactions (18) as  

 2
AA nSS λ⋅=   

 2
BB nSS λ⋅=   

 2
ABAB nSS λ⋅=  (22) 

Different multi-factor designs are detailed in different 
Chapters as given. 

 2.6. Hierarchical designs 
Hierarchical designs enable estimation of variance 

while there are only selected levels for factor combinations. 
These factors´ settings do not account for interactions 
between factors which is a result of the hierarchical structure 
of factors in the selected design. These designs are often 
used for evaluation of laboratory experimentation where 
factors can be for example operator, date of 
experimentation, laboratory method, different machinery, 
etc. These designs are often used for inter-laboratory 
comparisons.   

2.7. Response surface designs 
More sophisticated design approach is to use a response 

surface design. These designs cover evenly the experimental 
space. Box-Behnken design, Doehlerts´ geometrical designs 
(pentagonal and hexagonal designs) and the central 
composite designs are also suitable for expanding the 
experimental space mostly by the steepest accent or the 
steepest descent methodology. Very often are added central 
and axial points that create a hypercube or a hypersphere. 
Rotatability and orthogonality can be features of desings. 
The main aim of these designs is slightly altered in 
comparison to classical designs as these designs provide the 
functional estimates of the response, in either linear form 
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or second order function 
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where the function is polynomial and β ´s are coefficients 
and x represent the prediction variables in the model.  

Second order functions are not linear any more and 
curvature can be calculated and tested for difference from 
zero.  

Advantageous is to use additional central points to prove 
the quality of the model function established in the 
experiment as well as to use other types of additional points 
to widen the design space, e.g. axial points, etc.  

2.8. Nonlinear designs 
More comprehensive than response surface designs are 

nonlinear designs. They often model kinetics of chemical 
reactions that are either log normally or exponentially 
distributed. The SAS JMP® system uses the standard least 
square method to compute estimates. Another possibility is 
the stepwise regression method that is particularly suitable 
in nonlinear designs. In menu Personality of the window Fit 
Model with selected Model Specification are also listed 
Manova and Loglinear Variance approach for special 
problems. Another option is to use Generalized Linear 
Model for evaluation.  

2.9. Mixture designs 
Similar designs are designs for mixtures. They can be 

modelled in SAS JMP® by functions alike those given by 
(23) and (24), but also higher order functions (cubic) often 
called Scheffe’s cubic model or altered cubic function, here 
in (25) a function without an intercept  

 k
kji

jiijk

k

ji
jiij

k

i
ii xxxxxxy � � ����

<<<=

++= βββ
1

 (25) 

SAS JMP® system offers users a variety of different 
model effects, like factorial (full factorial, factorial to a 
given degree, factorial sorted), response surface, mixture 
response surface, polynomial to a given degree, Scheffe’s 
cubic (25) and radial.  

Mixtures have to meet at least one requirement limiting 
the experimental space that is formulated in (26) 

 1...21 =+++ kxxx  (26) 

and that prevents in most cases from estimation of the 
intercept in the model function. The SAS JMP® system 
provides the user with this selection of mixture designs: 
• simplex centroidal 
• simplex lattice 
• extreme vertices with the possibility of adding a linear 

constraint to a design  
• ABCD mixture design for factor screening  
• optimal design mirroring experimental needs and meet 

specific requirements.  

2.10. Optimal  designs 
 There are several different kinds of optimal designs, like 
A-, D- G- or V- optimality criterion fulfilling designs. There 
are two big groups of optimality criteria, one group 
optimizes the variance of the estimated function of 



parameters, the other group optimizes the variance of the 
prediction (e.g. G-, V-, Q-optimality). The SAS JMP® 
system uses by default the most often used D-optimality 
criterion and also the I-optimality criterion (I- stands for 
integration) in conjunction with the coordinate exchange 
mechanism. In the SAS JMP® system’s menu is also 
available the Bayesian D-optimality criterion. Besides the 
optimization function the SAS JMP® system also provides 
users with A-, D- and G-effectiveness values of a design and 
in addition with the prediction variance profile and the 
prediction variance surface.  

2.11. Taguchi arrays 
Taguchi designs use a different array structure in 

comparison to classical designs. These designs are 
composed of an inner and an outer array where inner array is 
a design build with controllable factors and outer array is 
build with noise factors. Crossing of these two arrays creates 
the Taguchi orthogonal design.  

Another specialty of these designs is the use of the loss 
function and the signal to noise ratio. This approach has 
several advantages and was generalized from the point of 
view of the statistical theory. The SAS JMP® system is one 
of the few software packages on the market that has a 
Taguchi platform.  

Taguchi designs are applied in three steps, first the 
system design (the primary design), then the design of 
parameters (the secondary design) and at last the tolerance 
design (the tertiary design). Each of these steps has its 
specific aim. The system has to be first designed based on 
the concept and the competition pressure and the price of a 
product put on the market. That is why Taguchi designs are 
so often used in manufacturing, quality improvement and 
statistical quality assurance. In the phase of parameter 
design the focus is on the improvement of the quality and 
performance of the product. After signal and noise factors 
and their influence on the overall mean value and variance 
of performance are identified, tolerances and factor settings 
can be proposed and verified in a separate experiment 
(confirmation treatment). This leads to quality improvement. 
Taguchi designs are probably the best example of practical 
applications of the experimental design’s contribution to 
manufacturing improvement [1-10].  

3.  CONCLUSIONS 

To support scientists and students a book shall be 
published detailing theory of Design of experiments and 
their evaluation and should be accompanied by real practical 
examples with applications to SAS® system. SAS® system 
has several interfaces that create or evaluate designs of 
experiments. The best suitable specialized statistical 
software for design of experiments seems to be the SAS 
JMP® system with a dozen of different platforms enabling 
the creation of various designs, e.g. classical, Taguchi, etc.  

The SAS JMP® system using evaluation is based on the 
least squares method or stepwise regression method, both a 
general methodology for evaluation of experiments. Other 
methods are manova or log variance method, even GLM is 
available. Besides of other qualities the SAS JMP® system 

computes a desirability function for factors and responses to 
find the best settings to solve an experimental problem.   

3.1. Advantages of the desirability function 
Big advantage of the SAS JMP® system is in 

determining the desirability, desirability values, desirability 
trace or function. This function plotted as functional 
relationship across factors and responses is aiming to find 
the most appropriate setting of factors and responses to gain 
the best settings. Desirability trace can be also maximalized 
which means that the best possible settings are found. 
Besides factors´ desirability functions see fig. 6, the SAS 
JMP® system provides users with a global desirability 
function (27) that is evaluated as the geometrical average of 
m individual desirability functions id  

 m
mdddD ...21=  (27) 

 
Figure 6. Different shapes of the desirability function. 
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