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Abstract − Lock-in and pulse phase infrared 

thermography measurement techniques have been exploited 
for quantitative assessment of subsurface defects in a 
reference specimen made of Plexiglas. Radiometric thermal 
images were post-processed using a contrast approach in the 
frequency domain, allowing defect depth location to be 
resolved with a relative combined standard uncertainty of 
about 7% for thicknesses above 3 mm. Conversely, 
significant radial heat diffusion next to the boundary of the 
discontinuity made accurate sizing of deeper subsurface 
defects more difficult. The obtained results demonstrate the 
potentiality of active thermography as a fast, powerful 
contactless NDT measurement tool.  

Keywords: Temperature measurements, radiometric 
infrared thermography, non destructive testing (NDT) 

1.  INTRODUCTION 

Total quality is now an established concept for mass 
products such as cars, consumer electronics, and personal 
computers. In many fields, primarily aerospace and military, 
it has been the rule for years, for security reasons. A major 
effort to reach this quality concept is to implement 
inspection tasks along the production line through effective 
nondestructive testing (NDT) methods to be used for either 
acceptance/rejection of parts, or for inspection of end 
products in service [1].  

In recent years, remarkable progresses in high sensitive 
infrared image detectors and much effort from researchers in 
leading university laboratories have brought about fast 
growth of infrared radiometric measurement techniques. 
Nowadays, active thermography [2-7] is recognized as one 
of the most powerful NDT tool to detect flaws and defects in 
different kinds of materials, such as metals, composites, and 
polymers. The active approach involves using an excitation 
source to induce thermal contrast into the material and an IR 
camera to measure the stationary or transient response.  

In particular, lock-in thermography [8-10] makes use of 
modulated optical stimulation to provide information about 
the thermophysical properties of the material as well as to 
identify subsurface defects in a quick and contactless way. 
Lock-in thermography has been proposed to detect areas of 
disbond in coatings [2], delaminations, impact damage and 
inclusions of spurious materials in composite materials 
[2,4,6], flat-bottom hole defects in steel [11-12], 
delaminations of veneered wood [13], to visualize fibre 

orientation in composites [14], to identify detachments or 
cracks in frescoes [15-17]. One limitation of lock-in 
thermography lies on the available range of frequencies for 
the heat flux modulation, which may be not sufficiently low 
to detect deeper defects in materials of very low thermal 
diffusivity and/or large thickness. 

Another approach is pulse thermography, which can be 
obtained by stimulating the part with one or more pulsed 
heat sources and monitoring its surface temperature 
evolution during the transient heating (cooling) phase 
[3,6,11,15,16]. The visibility of defects depends on several 
factors, which include material characteristics (i.e. thermal 
contrast), atmospheric conditions and instrument sensitivity. 
Measurements performed by means of the pulsed 
thermographic method are affected by local variation of the 
emissivity coefficient and by non-uniform heating of the 
surface, that can mask the defect visibility. The emissivity 
problem may be overcome by painting the surface, but this 
could be a solution only for parts where this surface finish is 
tolerable. The uniformity of surface heating may be 
improved by using the lateral heating technique described 
by Grinzato et al [17]. 

A measurement technique which combines the 
advantages of both lock-in and pulse thermography without 
sharing their drawbacks is pulse phase termography, which 
has been first proposed by Maldague and Marinetti [18-19]. 
The specimen is pulse heated as in pulsed thermography and 
the mix of frequencies of the thermal waves launched into 
the specimen is unscrambled by computing the Fourier 
transform of the temperature evolution over the field of 
view; the phase, or magnitude, image can be presented as in 
modulated lock-in termography. The fact that pulse phase 
termography sorts available information coherently in term 
of frequencies brings interesting features with respect to the 
more traditional contrast approach used in pulse 
thermography. 

In this paper both lock-in and pulse phase infrared 
thermography measurement techniques have been 
implemented for quantitative assessment of subsurface 
defects in a reference specimen made of Plexiglas. By 
proper post-processing of phase thermal images, size and 
depth locations of flat-bottom hole defects were determined 
and the measurement uncertainty assessed. Merits and 
limitations of the proposed approach, as well as metrological 
aspects related to possible interference inputs, are discussed 
thoroughly. 
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specimen simultaneously and the resulting temperature field 
of its surface is measured in the transient regime.  

Extraction of the various frequencies was performed by 
acquiring sequences of images and extracting the temporal 
decay of each pixel in the field of view. Hence, the discrete 
one-dimensional Fourier transform (DFT) was applied on 
each pixel of the thermogram sequence to compute the real 
and imaginary parts and, finally, amplitude and phase 
images were calculated. 

 

 

Fig. 4.  Pulsed infrared thermography measuring principle. 

3.  RESULTS AND DISCUSSION 

Lock-in amplitude and phase images of the reconstructed 
thermal wave on the reference specimen surface are reported 
in Fig. 5 for different modulation frequencies.  

As it can be observed, the information given by the 
phase image is actually more effective, since it is relatively 
independent of local optical (e.g. non-uniform heating) and 
infrared (e.g. variability in surface emissivity) surface 
features. As a consequence, only signal amplitude is affected 
by the specimen topography while phase is not, except for 
the level of phase noise which of course increases in parts 
where less light is absorbed per unit area.  

At 2,250 Hz, the relatively high modulation frequency 
limits the analysis to a close to the surface region, where 
black coating disuniformity can be appreciated in the phase 
image. By reducing the lock-in frequency, deeper defects are 
progressively revealed.  

In the mid-high range (0,100 Hz < f < 0,025 Hz) the first 
two rows are clearly visible: in the phase images, defects 
appear brighter than the surrounding background and their 
boundaries are well defined.  

The third row starts to come out for modulation 
frequencies in the mid-low range (0,015 Hz < f < 0,008 Hz). 
At this stage, the sharpness of the shallower defects in the 
first row becomes poor. 

At 4 mHz, also the deepest flat-bottom hole is detected, 
although the contrast with the background is remarkably 
lowered due to a noteworthy reduction in the phase shift. 
Moreover, at very low frequency the boundary of the defects 
in the thermal image seems to be “out of focus”, because of 
significant radial heat diffusion that takes place in the 
specimen plane. 

This frequency-dependent behaviour is a direct 
consequence of the inverse relationship existing between the 
thermal diffusion length µ and the modulation frequency f : 
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being ߱ ൌ  k the thermal conductivity of the ,݂ߨ2
material, ρ the density, Cp the specific heat at constant 
pressure and α the thermal diffusivity. For the amplitude 
image, the allowable depth range is given by (1) while, for 
the phase image, the maximum depth that can be inspected 
actually corresponds to 1,8µ [9]. Hence, usually tests should 
start at a quite high frequency value to investigate the 
surface layer; then the frequency must be decreased to 
investigate a deeper layer, after which the frequency must be 
further reduced. This procedure must go on until the entire 
thickness of the object is investigated or the minimum 
available modulation frequency is reached. 

Similar results (Fig. 5, last column) were obtained by 
unscrambling the frequency content of the infrared images 
sequence measured after thermal pulse stimulation (pulse 
phase approach). With respect to the lock-in technique, this 
method can be much more fast, since it might need just one 
measure to analyze the whole frequency range of interest, 
whereas the lock-in approach requires multiple iterative 
tests. Phase contrast however is poorer, hiding the detection 
of deeper flaws. One further drawback of the pulse phase 
approach is that a definite temperature difference between 
two successive images of the sequence must exist to clearly 
discern defects. To display discontinuities located more in 
depth a higher surface heating is usually needed. 

For quantitative non-destructive evaluation of subsurface 
defects the thermal diffusivity of the material should be 
known, as pointed out in (1). Unfortunately, the exact value 
of this parameter is not always available in the literature, 
because it strongly depends on the actual material 
composition.  

To overcome this problem, a fast method which makes 
use of a high speed IR camera has been developed. The 
proposed approach is based on a transmission scheme with 
thermal pulse stimulation and on the well known Parker’s 
law [20]:  
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where l is the material thickness and t0,5 the half 
temperature rise time, that is the time needed to reach one 
half of the maximum temperature increment over the sample 
surface opposite to the heated one. A high power flash was 
used to generate a sudden energy pulse (to limit heat 
exchange with the surroundings), so that test conditions 
were not too dissimilar from ideal adiabatic ones. 

The IR camera recorded the thermal evolution, allowing 
for the computation of the half temperature rise time.  

The accuracy of the method can be further improved by 
using specific non-linear interpolation models which take 
into account the actual heat exchange conditions [21]. 
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where Sdef and Sb are the phase signal levels of defected 
and background areas, respectively, measured at time t and 
t0, and tm is the time at which the heat absorption is 
maximum.  

Then, for each area of interest, C values at time t were 
plotted as a function of the modulation frequency (Fig. 7).  

 

 

Fig. 7.  Family of normalized contrast curves computed for each 
area of interest according to (3) vs. modulation frequency. 

To determine the frequency at which each defect had 
been first detected (fTR), a threshold level CTR was defined, 
so that for C ≥ CTR the discontinuity was assumed 
detectable, while for C < CTR it was not. The threshold value 
was determined by an iterative procedure. 

Finally, the subsurface defect depth was calculated as 
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Fig. 8 reports the comparison between estimated and 
nominal defects depth.  

 

 

Fig. 8.  Quantitative nondestructive evaluation of subsurface 
defects: comparison of estimated and nominal defects depth. 

Uncertainty bands for nominal depth values were 
calculated as type B (UNI CEI ENV 13005) by assuming a 
rectangular distribution of width 2R, where R = 0,05 mm is 
the resolution of the calliper used to measure the depth of 
the reference specimen flat-bottom holes. Uncertainty bands 

for estimated defect depth values were instead computed as 
combined standard uncertainty considering the type A 
contributions of  fTR and α. 

Relative uncertainty of depths estimation ranges from 
5,4% (defect #6) to 7,2% (defect #14). From Fig. 8 it can be 
observed that, as the two deepest defects are concerned, the 
uncertainty bands do not overlap. It can be concluded that 
3,2 mm thickness roughly corresponds to the maximum 
detection limit for the current measurement setup. 

As far as defects size assessment is concerned, obviously 
the best accuracy can be achieved when the contrast 
between defected and undefected areas is maximized.  

Hence, starting from the normalized contrast vs. 
modulation frequency plots, the frequency fmax  (for which it 
results C = Cmax) was first estimated for each region of 
interest (Fig. 9).  

 

 

Fig. 9.  Determination of the maximum normalized contrast 
modulation frequency for each region of interest. 

Then, the nearer available (i.e., such that f ≅ fX_max) lock-
in phase image was selected. The image file was hence post-
processed through different steps (filtering, image 
calibration, overlaying of predefined geometrical objects, 
measure of the defect area) by means of a dedicated digital 
image processing software written in Labview™.  

Results are reported in Fig. 10, where they are compared 
with the nominal radius value.  

 

 

Fig. 10.  Quantitative nondestructive evaluation of subsurface 
defects: comparison of estimated and nominal defects size. 
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Uncertainty bands were calculated as twice standard 
deviations (95% confidence value) on three measurements 
carried out with slightly different geometrical circles in 
order to take into account data variability induced by 
unsharpened defect boundaries.  

Relative uncertainty ranges from 4,5% for the shallower 
defects in the first row to about 88% for the deepest one 
(defect #13). The relative high uncertainty found, in 
particular for the deeper defects (located in the lower two 
rows), can be attributed to the limited number of 
experimental data (i.e., modulation frequency steps) and to 
significant radial heat diffusion, that made measurement of 
the actual hole boundary quite difficult. 

It is worth mentioning that similar results can be found 
by post-processing the thermograms obtained using the 
pulse phase approach.  

4.  CONCLUSIONS 

Active thermography measurement techniques have been 
exploited for quantitative assessment of subsurface defects 
in a reference specimen made of Plexiglas. By proper post-
processing of phase thermal images recorded at different 
frequencies and direct measurement of material’s thermal 
diffusivity, a fast, contactless and effective NDT 
methodology has been demonstrated. 

Lock-in thermography provides quantitative information 
about size, depth and thermal resistance of defects and, as 
phase images are used, relatively insensitivity to non-
uniform heating and local variation of the emissivity 
coefficient. The main limitation of this technique lies in the 
minimum frequency for the heat flux modulation which may 
be not sufficiently low to detect deeper defects. 

Pulse phase thermography is even more fast than lock-in. 
However, there are also some limitations: the main one is 
that to display deeper defects a higher surface heating is 
usually required, which may damage plastic materials. 

Future work directions will addressed the evaluation of 
different types of artificial defects as well as natural ones. 
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