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Abstract − The achievement of a proper and uniform 

pressure distribution between the membrane electrode 
assembly (MEA) and the bipolar plates of a proton exchange 
membrane fuel cell (PEMFC) is a key factor of stack design 
and assembly. Contact pressure levels are usually controlled 
by selecting an appropriate external clamping pressure on 
the endplates. Very few studies have been focused on the 
measurement of the contact pressure distribution within the 
fuel cell and its correlation with the applied external 
clamping torque. This study explores the possibility of using 
matrix-based piezoresistive thin-film sensors, to be placed 
between the MEA and the monopolar plate of a PEMFC, to 
investigate this correlation. Before embedding the sensor 
array into the fuel cell, it was validated for accuracy and 
repeatability by designing a pneumatic calibration device 
which allows to apply uniform static pressure levels over the 
whole sensor area. Preliminary results reported in this study 
showed that, as the clamping torque on the endplates is 
increased, the average pressure on the MEA remains almost 
constant but its distribution changes. The core area of the 
electrode becomes progressively more unloaded while 
average stresses on the gasket rise up, with significant stress 
concentration around the edge corners. 

Keywords: PEM fuel cells, contact pressure mapping, 
matrix-based piezoresistive thin-film sensors 

1.  INTRODUCTION 

Proton exchange membrane fuel cell (PEMFC) is an 
emerging technology that converts the chemical energy 
stored in hydrogen and oxygen into electricity, with very 
low pollutants generation. The stacking design and cell 
assembly parameters significantly affect the electro-
chemical performance of PEMFC [1-4], governing the 
ohmic and mass transport polarizations inside the fuel cell. 

One of the most important goals in stack design and 
assembly is to achieve a proper and uniform pressure 
distribution between the membrane electrode assembly 
(MEA) and the bipolar plates. Uneven distribution of the 
contact pressure will result in hot spots which may have a 
detrimental effect on PEMFC electro-chemical performance 
and life. For a given stacking design, contact pressure levels 

are usually controlled by selecting an appropriate external 
clamping pressure on the endplates. An insufficient 
clamping pressure may result in sealing problems, such as 
fuel leakage, internal crossover and high contact resistance 
between the gas diffusion layer (GDL) and the bipolar 
plates. On the other hand, a high clamping pressure may 
squeeze the relatively thin GDL and change its porosity and 
permeability, choking the flow of gases and making the 
migration of water difficult.  

Very little scientific research has been focused on the 
measurement of the contact pressure distribution within the 
fuel cell and its correlation with the applied clamping 
torque. 

Chang et al. [5] studied the effects of the clamping 
pressure on the performance of a PEMFC. The electro-
physical properties of a carbon paper gas diffusion layer 
(i.e., porosity, gas permeability, electrical resistance and 
thickness) were measured using a special designed test rig. 
Empirical correlations for the gas permeability and the 
electrical resistance of the GDL were found in terms of the 
clamping pressure level. Results showed that a low 
clamping pressure (< 5 bar) results in a high interfacial 
resistance between the bipolar plate and the gas diffusion 
layer that reduces the electrochemical performance of the 
fuel cell. In contrast, a high clamping pressure (> 10 bar) 
reduces the contact resistance between the graphite plate and 
the gas diffusion layer, but meanwhile narrows down the 
diffusion path for mass transfer from gas channels to the 
catalyst layers. However, the experimental tests were carried 
out on a test stand simulating the actual behaviour of a 
PEMFC and no information about the internal contact 
pressure distribution was provided. 

Recently, Wang et al. [6] used pressure sensitive Fuji 
films (Fuji Photo Co., Ltd, Tokyo, Japan) inserted between 
the MEA and the diffusion layer of a PEMFC to measure the 
pressure distribution of both conventional and newly 
designed hydro-pressurized endplates. It was found that by 
pressurizing the built-in pocket with hydraulic fluid, the 
pressure distribution over the fuel cell active area could be 
improved and fuel cell performance enhanced. The study 
was focused on the comparison between conventional and 
newly designed endplates rather than on the actual pressure 
distribution produced by different clamping pressure levels. 



Lee et al. [7] used finite element analysis (FEA) 
procedures to simulate the cell stack assembly of a single 
PEMFC with metallic bipolar plates. The contours of 
pressure distribution and compliance were obtained for key 
components such as the MEA and the gas diffusion layer. 
From these results, the effects of stack design and cell 
assembly procedures on stack integrity could be evaluated. 
In order to verify the results of the analysis, experimental 
tests, using a Fuji pre-scale pressure film inserted between 
the bipolar plates and the MEA, were conducted to establish 
the actual pressure distribution at four different clamping 
pressure levels. The calculated pressure contours were very 
similar to the experimental measurements, but the 
percentage error between the measured and simulated 
pressure values was quite large (10 − 60%). Moreover, the 
use of pre-scale pressure films, that saturate as the 
maximum pressure had been reached, did not allow pressure 
relaxations to be measured as the clamping pressure 
changed, thus hiding important information. 

The goal of this study is to develop a consistent method 
to measure the contact pressure distribution within a fuel 
cell and to allow real-time continuous data acquisition as the 
clamping pressure is varied. The proposed methodology 
relies on distributed matrix-based piezoresistive thin-film 
sensors to be interposed between the membrane electrode 
assembly and the monopolar plate of a proton exchange 
membrane fuel cell. 

2.  EXPERIMENTAL METHODS 

Recently, digital pressure sensing devices have been 
made available to researchers. Tekscan digital pressure 
sensors (Tekscan, Inc., South Boston, MA, USA) are one of 
the newer available technologies for quantification of 
compressive loads and contact pressures. These thin-film 
sensors are manufactured in many different sizes, shapes 
and range of spatial resolution. Researchers within the field 
of orthopaedics have used Tekscan sensors to quantify in 
vitro stress and contact area distributions in the knee joint 
[8-10] and to measure facet loads in the lumbar spine [11].  

2.1. Measuring principle 
Tekscan thin-film tactile pressure sensor array is a thin 

(0,1 mm about) grid-based device. It consists of a matrix of 
rows and columns of a patented semi-conductive ink coating 
that changes its electrical resistance when force is applied to 
it. These rows and columns intersect to form sensing 
elements (sensels) that are sandwiched between two flexible 
polyester sheets. The pressure on each element is assumed 
to be constant and equal to the pressure measured at the 
centre where the piezoresistive strips cross. By 
electronically scanning and measuring the change in 
resistance at each individual sensing element, the timing, 
force and location of contacts on the sensor surface can be 
determined. Raw (uncalibrated) output can be exported as a 
8-bit b/w image. 

A Tekscan array model #5076 was used to perform the 
experimental tests. This array has a square matrix of 83,8 × 
83,8 mm consisting of 1936 sensing elements with a spatial 
density of 27,6 sensel/cm2 (corresponding to a spatial 

resolution of about 1,90 × 1,90 mm). The pressure saturation 
rating (Psat) is 20,7 MPa. When coupled to the I-scan signal 
conditioning unit, a maximum sampling rate of about 100 
Hz can be attained. 

Tekscan I-scan software ver. 5.90 was used to gather 
pressure data and to calculate contact area and force. 

2.2. Sensor array calibration 
Sensor arrays coming from purchaser are not 

equilibrated and calibrated, so that equilibration and 
calibration of the matrix sensels must be performed in order 
to obtained quantitative data.  

These operations were carried out by designing a 
pneumatic calibration device which allows to apply uniform 
static pressure levels over the whole sensor area.  

 

 a) 

 b) 

Fig. 1.  Static calibration of the thin-film sensor array: a) view of 
the calibration device with reference pressure meter;  b) inside 

view of the air chamber with the sensor array inserted in it. 

The calibration device, see Figs. 1a and 1b, consists of 
two flat and thick metal plates (planarity tolerance ±5 μm). 
The film sensor is first placed onto the bottom plate and 
covered with a thin sheet of Teflon (0,010 mm). Sealing is 
achieved by means of a Gore-Tex gasket placed over the 
Teflon membrane. An air chamber was finally obtained by 
interposing a rigid polycarbonate frame between the two 
stainless steel plates, which were clamped together by 
12×M10 steel bolts. The pressure into the air chamber is 
controlled by a pressure regulator. A SIT-certified 0,05% 
accuracy class digital pressure transducer (AEP 
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of 8×M6 steel bolts. The active area (i.e., area of the 
membane electrode assembly) is about 50 cm2, while the 
total endplate area, which includes the sealing gasket, is 
about 82 cm2. Hence, since the active area of the sensor 
array is smaller than the endplate of the fuel cell, the sensor 
had to be placed covering only one side of the gasket frame 
(see Fig. 4b). Moreover, to put up the sensor film into the 
fuel cell, a hole had to be made on the film itself allowing 
one of the clamping bolts to be inserted through it. 

 

Fig. 4.  Proton exchange membrane fuel cell: a) assembled fuel 
cell;  b) positioning of the pressure film onto the MEA. 

Experimental tests were carried out by varying the 
external clamping pressure step by step. This was obtained 
by using a calibrated torque wrench with torque values of 2, 
4, 6, 8, 10 and 11 Nm.  
At each step, after waiting for about 30 s, the torque value 
on each bolt was checked to account for possible gasket or 
porous membrane electrode relaxations. The eight bolts 
were clenched using always the same sequence (mid-left, 
mid-right, mid-lower, mid-upper, upper-left, lower-right, 
lower-left, upper-right). Measurements were taken waiting 
180 s after each step increase or decrease. 

3.  RESULTS AND DISCUSSION 

The obtained results are shown in Fig. 5, where average 
contact pressures on the membrane electrode assembly, on 
the sealing gasket and on the end plate are reported as a 
function of the applied clamping torque. Average values 
were calculated by considering the whole area of the 
membrane electrode (MEA), four times the area covered by 

one side of the seal frame (gasket) and the area of all loaded 
sensels (end plate), respectively.  

It can be observed that the average contact pressure 
acting on the MEA does not increase significantly as the 
clamping pressure is raised. Otherwise, the average contact 
pressure on the gasket displays an initial sharp increase up 
to 6 Nm, followed by a reduced pressure slope.  
 

 

Fig. 5.  Average contact pressures measured on fuel cell’s MEA, 
gasket and monopolar endplate at different clamping torques. 

Further insight into the actual pressure distribution 
within the PEMFC can be achieved by observing the colour-
coded pressure contours reported in Fig. 6. Although the 
average pressure on the MEA remains almost constant, its 
distribution reveals that, as the clamping torque on the 
endplates is increased, the innermost area of the membrane 
electrode becomes gradually more unloaded, while, at the 
same time, average stresses on the gasket rise up, with 
significant stress concentration around the edge corners. 
This behaviour proved that the endplates bent under loading, 
producing an uneven pressure distribution over the fuel cell 
electrode. 

 
Table 2. Average contact pressures measured at 11 Nm on MEA, 

gasket and monopolar endplate by changing the relative orientation 
of the sensor array with respect to the fuel cell (90° steps). 

 
Sensor array 
orientation 

Avg. pressure 
on MEA 

(kPa) 

Avg. pressure 
on gasket 

(kPa) 

Avg. pressure 
on end plate 

(kPa) 
0° 620 6110 1830 

90° 588 6286 1765 
180° 644 6568 1898 
270° 604 6181 1788 

 
Experimental tests were also repeated by rotating the 

pressure film, changing its relative position with respect to 
the fuel cell. These tests allowed to check the pressure 
distribution over all the frame area of the sealing gasket, 
although values were measured in replicated tests rather than 
in one single shot. Average pressures are reported in Table 2 
while colour-coded pressure distributions are shown in Fig. 
7. Both average pressure values and pressure distributions 
show a limited variability, which is within the uncertainty of 
the current measurement set-up. 

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12

Av
er
ag
e 
co
nt
ac
t 
pr
es
su
re
 /
 k
Pa

Clamping torque / Nm

Average contact pressure on end plate
Average contact pressure on MEA
Average contact pressure on gasket



 

 
 

 CLAMPIN

CLAMPIN

 

Fig. 6.  

Fig

 

NG TORQUE: 2

NG TORQUE: 8

Colour-coded c

g. 7.  Colour-co

2 Nm  

 
 Nm  

 

contours showi

 

oded contours sh
sensor a

 CLAM

 CLAMP

ng measured pr

howing pressur
rray with respe

PING TORQUE

PING TORQUE:

ressure distribu

re distribution a
ct to the fuel ce

E: 4 Nm  

 10 Nm  

ution inside the P

 1) 

 4) 

at 11 Nm clamp
ell (90° steps).

 CLA

 CLAM

PEMFC at diffe

ping torque obta

AMPING TORQU

MPING TORQU

ferent clamping 

ained by rotatin

UE: 6 Nm

UE: 11 Nm

torques. 

 2)

 3)

ng the 

 

 

) 

) 



Whatever the relative position of the film sensor with 
respect to the fuel cell is, the highest stress value was always 
found close to the edge corners of the endplate. Moreover, 
the pressure distribution along the sealing gasket looks quite 
symmetric. 

 

4.  CONCLUSIONS 

An experimental approach that allows to measure and 
monitor the contact pressure distribution within a fuel cell as 
the clamping pressure is varied has been presented.  

The proposed methodology relies on the use of a grid-
based piezoresistive thin-film array, which was placed 
between the membrane electrode and the monopolar 
endplate of a proton exchange membrane fuel cell.  

Preliminary results reported in this study highlight the 
effectiveness of the proposed measurement solution, which 
allowed to gain quantitative data about the relationship 
between the actual pressure distribution within the fuel cell 
and the applied external clamping torque.  

Since an uneven distribution of the contact pressure can 
result in hot spots which might have a detrimental effect on 
the electro-chemical performance and life of the PEMFC, 
this correlation can be of considerable interest for fuel cell 
stack design. The proposed measurement system may assist 
the development of next-generation fuel cells or could be 
used as a powerful validation tool for detailed finite element 
models. 

Future work directions will try to find an evidence on the 
actual correlation existing between the pressure distribution 
on the MEA and the electro-chemical performance of the 
fuel cell. 
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