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Abstract − The paper presents the proposal of a new 

mathematical tool for LabVIEW environment – the Large 

Number Library. After the short introduction describing the 

security issue in the Distributed Measurement-Control 

Systems (DMCS), the most popular asymmetric encryption 

algorithms (public-key encryption algorithms) are described 

in order to demonstrate the need for developing such a 

library. The LN library was implemented in two variants: 

the native LabVIEW code (G language) and using external 

software modules (DLLs). The algorithms implemented in 

both alternatives have been developed basing on the 

Number Theory Library (NTL) – Victor Shoup’s open 

source library. The results of accuracy and efficiency tests 

for several functions implemented in both variants are 

shown. The developed LN library will allow for the creation 

of the advanced cryptographic libraries dedicated to the 

LabVIEW environment, enabling the development of secure 

communication channels in DMCS and information security 

of DMCS networks. 

Keywords: Large Numbers, LabVIEW, public-key 

encryption systems. 

1.  INTRODUCTION 

The modern applied metrology is integrally linked with 

other fast-growing domains, such as computer technology, 

data processing and telecommunications. Adaptation of the 

information systems’ techniques for the needs of 

measurement systems created a new interdisciplinary field 

dealing with Distributed Measurement-Control Systems 

(DMCS). Elements of DMCS (nodes) are distributed 

territorially, connected via wired or wireless network and 

able to exchange information between each other. Currently 

the research in the area of DMCS is focused on the 

applicability issues and adapting of new information and 

communication technologies for such systems [8]. 

Nowadays, a very important issue in DMCS technology 

ensures the safety of communication. In many cases, the 

success of often costly experiments or missions and also the 

biological and economical security depends on the proper 

functioning of such systems. Due to the still growing 

integration with telecommunications and general public 

computer networks, the security of distributed measurement 

systems has been dramatically reduced. In many DMCS the 

information security of the network becomes one of the 

major development problems. Information security issues 

are also very important (because of the specific openness of 

such systems, and ease of attack) in the wireless and mobile 

DMCS systems. Since the nodes of DMCS can be both so-

called Measuring Servers, usually based on PCs with huge 

processor power, as well as mobile wireless sensors 

powered from battery, the existing disparity of calculation 

power makes another important issue for the development of 

common methods, ensuring the safety of DMCS. Therefore 

there is an urgent need to develop proper methods and tools 

to ensure the safety and security of these systems [1, 8]. 

The software plays nowadays a huge role in 

measurement systems and very often determines their 

quality. The growing processors’ computing power and 

memory capacity allows for the development of more 

complex software. An important issue becomes the creation 

of new methods and software tools for designing distributed 

measurement systems, and in particular low-cost and easy-

to-use libraries and tools for designing software that 

provides secure exchange of information independently of 

used information and communication infrastructure. 

Existing software design tools dedicated for DMCS, 

integrated software environments such as LabVIEW, 

LabWindows/CVI, HPVEE, enable simple and flexible 

development process of applications, but among others do 

not include libraries for secure data exchange. The security 

problem was only slightly considered which has resulted in 

the introduction of certain access control mechanisms to 

certain parts of an application (front panels and their 

components) based on login and password identification 

system. But there is no use of cryptographic methods, and 

the information between nodes is sent explicitly, mostly as a 

plain text. 

Therefore, it seems necessary to develop a complete 

library of functions, programs and tools tailored to specific 

programming environments, which would give the 

application or system developer the opportunity to design 

and simulate secure and safe distributed measurement 

system in an easy and intuitive way. These additives should 

help to ensure safe transmission of data in any 

communication infrastructure and the creation of 

mechanisms for authentication and integrity of both 

measurement and control data. 

In the previous work, the authors have analyzed the 

LabVIEW environment capabilities for efficient 

implementation of cryptographic algorithms [1]. The next 



phase of the work, described in this paper, is to develop new 

mathematical tool for LabVIEW environment - a Large 

Number library (also known as Big Integer or arbitrary 

length integer library). This library allows for the 

computation on numbers with arbitrary (within the limits of 

available memory) number of decimal digits, far exceeding 

the typical representation in computer systems (32 or 64 

bit). Large numbers are widely used in many popular 

cryptographic algorithms, including RSA, Rabin or ElGamal 

public-key encryption systems, used for both, data 

encryption and the generation of secure digital signatures [2, 

3]. The LN library in addition to basic arithmetic operation 

includes operation modulo N in the suitable rings or finite 

bodies, functions for calculating the opposite element in 

such algebras and primality test algorithms. 

This paper presents a proposal of the implementation of 

Large Number library for LabVIEW environment. The main 

aim of this paper is to show different ways of implementing 

cryptographic algorithms in the LabVIEW environment, and 

to give tools that will be helpful for further work, that is for 

the implementation of specific algorithms. The paper also 

provides basic theoretical knowledge about public-key 

encryption systems, which are claimed to be useful in 

creating safe and secure DMCS. Such a short tutorial should 

be helpful for better understanding of the topic. The paper is 

organized as follows. In the section 2 we present the most 

popular asymmetric encryption algorithms (public-key 

encryption algorithms) and show the need for developing 

library which can deal with large numbers. Next, we shortly 

brief the Number Theory Library, developed by Victor 

Shoup [7,10], which will be used as a reference software (in 

section 3) and the Crypto-G library for LabVIEW [9], which 

is not sufficient for practical use, due to the lack of 

asymmetric encryption systems (in section 4). In section 5 

we present the implementation issues of our LN library in 

two variants: first in the native LabVIEW graphical 

language, second based on the external modules 

implemented in C++. Then, in section 6, we show the results 

of accuracy and efficiency tests for both alternatives. In the 

last section we conclude our work and give the 

recommendations for further work – implementation of 

cryptographic tools library for LabVIEW environment. 

2.  PUBLIC-KEY ENCRYPTION SYSTEMS 

Public key cryptography is a method of encrypting 

messages using a nonsecret (public) key. The term public 

key cryptography also includes various others cryptographic 

methods using a public key, such as authentication, digital 

signature schemes, and key agreement [2, 3]. 

Preliminary analysis of the distributed measurement 

system for introducing elements of cryptography concludes 

that one of the main problems may be the disproportion in 

power consumption between different types of system 

nodes, such as servers and mobile measurement sensors. 

Therefore in this section we focus first on the asymmetric 

cryptographic systems, also known as public key encryption 

systems [1, 8]. 

In public-key encryption systems, each entity A has a 

public key e and a corresponding private key d. In secure 

systems, the task of computing d given e is computationally 

infeasible. The public key defines an encryption 

transformation Ee, while the private key defines the 

associated decryption transformation Dd. Any entity B 

wishing to send a message m to A obtains an authentic copy 

of A’s public key e, uses the encryption transformation to 

obtain the ciphertext c = Ee(m), and transmits c to A. To 

decrypt c, A applies the decryption transformation to obtain 

the original message m = Dd(c) [4]. 

The public key need not be kept secret, and, in fact, may 

be widely available – only its authenticity is required to 

guarantee that A is indeed the only party who knows the 

corresponding private key. A primary advantage of such 

systems is that providing authentic public keys is generally 

easier than distributing secret keys securely, as required in 

symmetric key systems. 

Public-key encryption schemes are typically 

substantially slower than symmetric-key encryption 

algorithms such as DES. For this reason, public-key 

encryption is most commonly used in practice for the 

transport of keys subsequently used for bulk data encryption 

by symmetric algorithms and other applications including 

data integrity and authentication, and for encrypting small 

data items such as credit card numbers and PINs. Public-key 

decryption may also provide authentication guarantees in 

entity authentication and key establishment protocols. The 

main advantage of public key encryption systems used for 

distributed measurement systems is asymmetric 

computational power requirement for both sides: encryption 

and decryption, which can fit the DMCS architecture. 

A public key encryption scheme is comprised of three 

algorithms: a key generation algorithm, an encryption 

algorithm and a decryption algorithm [2, 3]. In the next 

three subsections, the most popular asymmetric encryption 

algorithms will be presented with particular emphasis on 

arithmetic operations that need to be done for arbitrary 

length integers. 

2.1 RSA public-key encryption 

The RSA cryptosystem, named after its inventors R. 

Rivest, A. Shamir, and L. Adleman, is the most widely used 

public-key cryptosystem. It may be used to provide both 

secrecy and digital signatures and its security is based on the 

intractability of the integer factorization problem. This 

section briefly describes the RSA encryption scheme, notes 

on its security and some implementation issues can be found 

in the literature [3, 4]. 

 

Key generation for RSA public-key encryption 
Each entity A should do the following: 

• Generate two large random primes p and q, each roughly 

the same size. 

• Compute n = pq and k = (p − 1)(q − 1). 

• Select a random integer e, 1 < e < k, gcd(e, k) = 1. 

• Compute the unique integer d, 1 < d < k, such that  

• ed ≡ 1 (mod k). 

• A’s public key is (n, e); A’s private key is d. 

 

 

 



RSA public-key encryption algorithm 

Encryption. B should do the following: 

• Obtain A’s authentic public key (n, e). 

• Represent the message as an integer m in [0, n − 1]. 

• Compute c = me mod n. 

• Send the ciphertext c to A. 

Decryption. To recover plaintext m from c, A should do the 

following: 

• Use the private key d to recover m = cd mod n 

Given the latest progress in algorithms for factoring 

integers, a 512-bit modulus n provides only marginal 

security from concerted attack. For long-term security, 

1024-bit or larger modulus should be used. 

In order to improve the efficiency of encryption, it is 

desirable to select a small encryption exponent e such as e = 

3. A group of entities may all have the same encryption 

exponent e, however, each entity in the group must have its 

own distinct modulus. Thus a small encryption exponent 

such as e = 3 should not be used if the same message, or 

even the same message with known variations, is sent to 

many entities. Alternatively, to prevent against such an 

attack, a pseudorandomly generated bitstring of appropriate 

length should be appended to the plaintext message prior to 

encryption; the pseudorandom bitstring should be 

independently generated for each encryption (so called 

“salting the message”) [4]. 

As was the case with the encryption exponent e, it may 

seem desirable to select a small decryption exponent d in 

order to improve the efficiency of decryption. 

2.2 Rabin public-key encryption 

The Rabin public-key encryption scheme was the first 

example of a provably secure public-key encryption scheme 

– the problem faced by a passive adversary of recovering 

plaintext from some given ciphertext is computationally 

equivalent to factoring [4, 6]. 

 

Key generation for Rabin public-key encryption 

Each entity A should do the following: 

• Generate two large random primes p and q, each roughly 

the same size. 

• Compute n = pq. 

• A’s public key is n; A’s private key is (p, q). 

Rabin public-key encryption algorithm 

Encryption. B should do the following: 

• Obtain A’s authentic public key n. 

• Represent the message as an integer m in [0, n − 1]. 

• Compute c = m
2
 mod n. 

• Send the ciphertext c to A. 

Decryption. To recover plaintext m from c, A should do the 

following: 

• Find the four square roots (from m1 to m4) of c mod n. 

• The message sent was either m1, m2, m3, or m4. A 

somehow decides which of these is m. 

Note: there exists simple algorithm for finding square roots 

of c mod n = pq when p ≡ q ≡ 3 (mod 4) 

Rabin encryption is an extremely fast operation as it only 

involves a single modular squaring. By comparison, RSA 

encryption with e = 3 takes one modular multiplication and 

one modular squaring. Rabin decryption is slower than 

encryption, but comparable in speed to RSA decryption. 

2.3 ElGamal public-key encryption 

The ElGamal public-key encryption scheme can be 

viewed as Diffie-Hellman key agreement in key transfer 

mode. Its security is based on the intractability of the 

discrete logarithm problem and the Diffie-Hellman problem 

[4, 6]. The basic ElGamal is shown below, the generalized 

ElGamal encryption schemes can be found in [4]. 

 

Key generation for ElGamal public-key encryption 

Each entity A should do the following: 

• Generate a large random prime p and a generator k of the 

multiplicative group Zp of the integers modulo p. 

• Select a random integer a, 1 ≤ a ≤ p − 2, and compute k
a
 

mod p. 

• A’s public key is (p, k, k
a
); A’s private key is a. 

ElGamal public-key encryption algorithm 

Encryption. B should do the following: 

• Obtain A’s authentic public key (p, k, k
a
). 

• Represent the message as an integer m in [0, p − 1]. 

• Select a random integer i, 1 ≤ i ≤ p − 2. 

• Compute j = k
i
 mod p and l = m · (k

a
)

i
 mod p. 

• Send the ciphertext c = (j, l) to A. 

Decryption. To recover plaintext m from c, A should do the 

following: 

• Use the private key a to compute j
p−1−a

 mod p. 

• Recover m by computing (j
−a

) · l mod p. 

3.  NTL LIBRARY 

Number Theory Library is a high-performance, portable 

C++ library providing data structures and algorithms for 

arbitrary length integers; for vectors, matrices, and 

polynomials over the integers and over finite fields; and for 

arbitrary precision floating point arithmetic [10].  

NTL provides high quality implementations of state-of-

the-art algorithms for:  

• arbitrary length integer arithmetic and arbitrary precision 

floating point arithmetic;  

• polynomial arithmetic over the integers and finite fields 

including basic arithmetic, polynomial factorization, 

irreducibility testing, computation of minimal 

polynomials, traces, norms, and more;  

• lattice basis reduction, including very robust and fast 

implementations of Schnorr-Euchner, block Korkin-

Zolotarev reduction, and the new Schnorr-Horner pruning 

heuristic for block Korkin-Zolotarev;  

• basic linear algebra over the integers, finite fields, and 

arbitrary precision floating point numbers.  

NTL provides a clean and consistent interface to a large 

variety of classes representing mathematical objects. It 

provides a good environment for easily and quickly 

implementing new number-theoretic algorithms, without 

sacrificing the performance.  

NTL is written and maintained by Victor Shoup with 

some contributions made by others. NTL is free software, 



and may be used according to the terms of the GNU General 

Public License.  

3.1 Large Numbers’ representation in NTL 

The class ZZ is used to represent signed arbitrary length 

integers. Routines are provided for all of the basic arithmetic 

operations, as well as for some more advanced operations 

such as primality testing. Space is automatically managed by 

the constructors and destructors. This module also provides 

routines for generating small primes, and fast routines for 

performing modular arithmetic on single-precision numbers. 

One can compute with ZZs much as with the regular data 

types, in that most of the standard arithmetic and assignment 

operators can be used in a direct and natural way. The C++ 

compiler and the NTL library routines automatically take 

care of all the bookkeeping involved with memory 

management and temporary objects.  

For every function in NTL, there is a procedural version 

that stores its result in its first argument. The reason for 

using the procedural variant is efficiency: using an operator 

usually causes a temporary ZZ object to be created and 

destroyed, whereas the procedural version will not create 

any temporaries. Where performance is critical, the 

procedural version is to be preferred [10]. 

4.  LABVIEW AND CRYPTO-G LIBRARY 

It is well known that the LabVIEW environment has 

built in the huge number of libraries and programming tools. 

However, the lack of elements related to security of 

information systems, prevents the possibility of creating 

secure, cryptographic systems. In addition, well equipped 

mathematical library, have some limitations that prevent the 

efficient implementation of specific cryptographic 

algorithms. The basic problem is limited to 32 bits, from 

version 8.0 increased to 64 bits, integer numbers precision. 

This limitation prevents, among others, for the immediate 

implementation of secure encryption algorithms with public 

key, in which the huge primes are used (for example primes 

with one hundred digits). 

After the analysis of the on-market availability of 

existing cryptographic solutions for LabVIEW environment, 

the Crypto-G library was found [9]. This library, provided 

by the VARTOR Technology Solutions as a shareware, is 

treated as unauthorized by National Instrument set of tools 

for LabVIEW environment (LabVIEW Toolkit). Crypto-G 

is advertised as the most comprehensive cryptographic 

library for LabVIEW and contains over 50 functions 

(Virtual Instruments) including the following functions: 

• Symmetric Encryption 

- Advance Encryption Algorithm (AES) 

- Data Encryption Algorithm (DES) 

- SKIPJACK, TEA, BLOWFISH 

• Hashing 

- Secure Hash Algorithm (SHA-1) 

- Message Digest 2 and 5 (MD2, MD5) 

• Message Authentication 

- Keyed-Hashed Message Authentication (HMAC) 

- Data Authentication Code (DAC) 

- Random Number Generators (Based on SHA-1) 

• Several Miscellaneous VIs 

- Large Numbers library (Beta) 

- Key Exchange Algorithm (KEA) (Beta) 

Nevertheless, a set of encryption algorithms that is 

available in the Crypto-G library is rather small. The 

encryption algorithms are limited to a few systems with a 

private key, the public key systems are not implemented at 

all, a shortcut functions are limited to three, in the version 

without the key. The lack of public key encryption 

algorithms is probably the result of issues discussed earlier, 

namely the limited numbers’ precision. Although the library 

contains a Large Number sub-palette, it is only the pre-

release version (so called beta version) which is incomplete, 

inefficient and contains many errors. 

As it was said in the introduction in the previous work, 

the authors have analyzed the LabVIEW environment 

capabilities for efficient implementation of cryptographic 

algorithms [1]. On the basis of the conclusions of that 

analysis and due to the issues presented above, the authors 

decided to develop a new tool for LabVIEW environment - a 

Large Number Library. This library allows for the 

computation on numbers with arbitrary (within the limits of 

available memory) number of decimal digits and would 

allow one to build asymmetric cryptographic systems for 

both, data encryption and the generation of secure digital 

signatures.  

5.  LN LIBRARY FOR LABVIEW ENVIRONMENT 

5.1 Large Numbers’ representation 

The integers of arbitrary length can be represented in 

many ways. First of all they are not negative numbers in 

range from 0 to LNmax limited by the maximum number of 

digits (e.g. 256 or more). To make implementation the most 

elegant and efficient, the large number is represented as an 

array of bytes, which are present in LabVIEW as unsigned, 

8-bit integers. Every byte acts as a digit in the 256-based 

system. The bytes are placed in the little-endian order, that 

means the first array element (index 0) represents weight 

256
0
, the next (index 1) 256

1
, and the last (index k) 256

k
. 

5.2 Used algorithms 

The theory and implementation notes for both, integer 

and modular multiple-precision arithmetic algorithms can be 

found in [4, 7] and also in the source files of NTL library 

[10]. For example, the multiple-precision addition algorithm 

is shown below [4]. 

 

Multiple-precision addition 

INPUT: positive integers x and y, each of n + 1 base b 

digits. 

OUTPUT: the sum x + y = (wn+1wn· · · w1w0)b in radix b 

representation. 

1. c ← 0 (c is the carry digit). 

2. For i from 0 to n do the following: 

2.1. wi (xi + yi + c) mod b. 

2.2. If (xi + yi + c) < b then c ← 0; otherwise c ← 1. 

3. wn+1 ← c. 

4. Return((wn+1wn· · · w1w0)).  



5.3 List of implemented functions 

All libraries’ elements can be divided into several 

categories. All categories and functions are listed in Table 1. 

Table 1.  List of functions implemented in LabVIEW LN Library. 

Arithmetic functions 

LN_Add adds two LN arguments 

LN_Subtract 
subtracts two LN arguments (returns 

underflow if the result is negative) 

LN_Multiply multiplies two LN arguments 

LN_Divide 
divides two LN arguments (returns 

quotient and reminder) 

LN_Square raises one LN argument to the square 

LN_RightShift 
shifts right one LN argument (division 

by 2) 

LN_LeftShift 
shifts left one LN argument 

(multiplication by 2) 

Comparison functions 

LN_Equal_0 tests if argument is equal 0 

LN_Equal tests if two arguments are equal 

LN_Greater 
tests if one argument is grater (or 

optionally equal) than other 

Modular arithmetic functions 

LN_Modulus 
calculates the integer reminder of two 

LN arguments 

LN_NegateModulo 
calculates the negative of one LN 

argument modulo second LN argument 

LN_AddModulo 
calculates the sum of two LN 

arguments modulo third LN argument 

LN_SubtractModulo 
calculates the difference of two LN 

arguments modulo third LN argument 

LN_MultiplyModulo 
calculates the product of two LN 

arguments modulo third LN argument 

LN_SquareModulo 

calculates the one LN argument raised 

to the square modulo second LN 

argument 

LN_PowerModulo 

calculates the one LN argument raised 

to the second LN argument modulo 

third LN argument 

LN_InverseModulo 

calculates the inverse (if exists) of one 

LN argument modulo second LN 

argument or the GCD of two LN 

arguments (otherwise) 

Random number generation and primality test 

LN_PRNG 
generates a set of pseudo-random large 

numbers  

LN_PrimalityTest tests if LN argument is a prime number 

Utility functions 

LN_LN2String 
converts LN argument into decimal 

string 

LN_String2LN converts decimal string into LN number 

5.4 Implementation details 

During the development, all previously mentioned 

functions were implemented in two variants and the 

accuracy and effectiveness of both alternatives was tested. 

The results should give the recommendations for further 

work, namely for the implementation of asymmetric 

cryptographic systems such as RSA, Rabin or ElGamal 

systems. The two ways of implementation are the results of 

previously made analysis, and are as follows: 

• implementation in the native LabVIEW graphical 

language G (see fragment of the block diagram of 

LN_Add function in Fig. 1); 

• implementation using the external software modules 

written in C++ (with sources from NTL library) and 

compiled into a DLL (see fragment of code of Add 

function below). 
 

// fragment of Add function 

pc = c; 

carry = 0; 

do { 

   long t = (*(++a)) + (*(++b)) + carry; 

   carry = t >> NTL_NBITS; 

   *(++pc) = t & NTL_RADIXM; 

   i--; 

} while (i); 

// end of code fragment 

 

Fig. 1.  Fragment of the block diagram of LN_Add function. 

To ensure compliance with established types of large 

numbers representation in the LabVIEW environment and 

because of the limitations of possible data types that can be 

transmitted through the Call Library Function Node, in all 

functions exported from a DLL library, the conversion 

between objects of class ZZ and byte arrays was made. 

6.  TESTS RESULTS 

In order to examine the accuracy and effectiveness of the 

developed functions, in both implementation variants, the 

proper test applications were built. The test applications 

were designed in a way that allows not only functional 

validation of implemented operations but also could 

measure the execution time for every function. Due to the 

specificity of the tested library, two test applications were 

developed: one for arithmetic operations (including 

reduction modulo N) and the other one for the modular 

arithmetic operations. In each of them the tested functions 

were run in the loop, for randomly generated input data. 

All the library functions and tests applications were 

developed in the LabVIEW environment in version 8.5, 

external modules were written in C++ and compiled to a 

DLL in a Microsoft Visual C++ 2005 Express Edition 

environment. The execution times were obtained by 

measuring the timestamps within the code. The timestamp 



measurements were conducted for executables built with 

Application Builder tool. 

Experimental results for basic integer and modular 

arithmetic functions are shown in Table 2 and in Table 3, 

respectively. Tables contain execution times in seconds, for 

1 million iterations, for input numbers contained of 10 and 

100 digits (T10 and T100 respectively). For modular 

arithmetic the modulus contained two times more digits than 

the arguments (quite typical situation for public key 

algorithms). The results of our functions (bold font) are 

compared to the DLL version (the prefix “extern”) and the 

original Crypto-G version (the prefix “crypto”). 

Table 2.  Test results of integer arithmetic functions. 

Function name T10 [s] T100 [s] 

LN_Add 5,3 7,5 

extern_LN_Add 4,1 5,5 

crypto_LN_Add 7,8 10,5 

LN_Subtract 4,3 7,4 

extern_LN_ Subtract 3,5 5,4 

crypto_LN_ Subtract 30,9 37,4 

LN_Multiply 5,8 143,3 

extern_LN_Multiply 4,1 10,4 

crypto_LN_Multiply 9,1 144,8 

Table 3.  Test results of modular arithmetic functions. 

Function name T10 [s] T100 [s] 

LN_AddModulo 14,2 20,1 

extern_LN_AddModulo 5,3 9,1 

crypto_LN_AddModulo 417,9 322,4 

LN_SubtractModulo 9,0 15,3 

extern_LN_ SubtractModulo 10,4 13,4 

crypto_LN_ SubtractModulo 7088,3*) not tested 

LN_MultiplyModulo 18,9 153,1 

extern_LN_MultiplyModulo 5,3 12,9 

crypto_LN_MultiplyModulo 1577,1 1398,3 

*) enormous execution time and also incorrect results 

 

The analysis of the presented results leads to the 

following conclusions.  

• Our Large Number library is in general much more 

efficient than the beta version of Crypto-G solution (in 

particular for the modular functions). 

• Addition and subtraction functions written in G code are 

in general only a little bit slower than the external 

versions for both, the integer and modular version. 

• Our multiplication functions written in G code are much 

slower than the external versions, especially for input data 

with great number of digits. This is probably due to yet 

not optimized memory operations and used classical 

algorithms (in the future we plan to implement more 

efficient algorithms, like Karatsuba multiplication [4]). 

• Our modular multiplication functions for typical large 

numbers (about one hundred decimal digits) are much 

slower then DLL version but still almost one order of 

magnitude faster than the Crypto-G version. 

7.  CONCLUSIONS 

Paper concerns the field of Distributed Measurement-

Control Systems and in particular communication security 

issue in such systems. The huge role of the software in 

DMCS is shown, and the need to develop some 

cryptographic tools for such systems is presented. These 

tools would give the DMCS’ developers the opportunity to 

design secure systems in an easy and intuitive way. The 

paper provides basic theoretical knowledge about public-key 

encryption systems which are claimed to be useful to create 

safe and secure DMCS. The main goal of the paper is to 

present the new mathematical tool for LabVIEW, the Large 

Numbers library, which is necessary for further 

implementation of specific, asymmetric algorithms such as 

RSA or Rabin encryption systems. The LN library was 

implemented in two variants: using only native LabVIEW 

code (G language) and using external software modules 

(DLLs). Implemented functions were tested and the tests’ 

results lead to the following conclusions. 

There is a possibility to implement the Large Number 

library in pure G code. The efficiency of such a solution 

could be quite similar to the version using external software 

modules when the fast algorithms are used and some code 

optimization steps are performed. The Large Number library 

written in pure G code can be used not only in DMCS’ PC-

based modules but also in FPGA-based hardware solutions 

which can be programmed directly from the LabVIEW 

environment (using the LabVIEW FPGA Module). 

REFERENCES 

[1] P. Bobiński, W. Winiecki, “LabVIEW Capabilities Analysis 

for Cryptographic Algorithms Implementation” (in Polish 

“Analiza moŜliwości wykorzystania środowiska LabVIEW 

do implementacji algorytmów kryptograficznych”, Przegląd 

Elektrotechniczny, vol. LXXXIV, no. 5, (2008), pp. 228-231. 

[2] Henk C., A. van Tilborg (Ed.), Encyclopedia of 

Cryptography and Security, Springer, 2005 

[3] N. Koblitz, A Course in Number Theory and Cryptography, 

Springer Verlag, New York, 1994. 

[4] Menezes, P. Oorschot, S. Vanstone, Handbook of Applied 

Cryptography, CRC Press Inc., 1997. 

[6] Schneier B, Applied Cryptography Second Edition: 

protocols, algorithms, and source code in C, John Wiley & 

Sons, 1996 

[7] V. Shoup, A Computational Introduction to Number Theory 

and Algebra, Cambridge University Press, Cambridge 2005. 

[8] W. Winiecki, T. Adamski, P. Bobiński, R. Łukaszewski, 

“Security of Distributed  Measurement and Control 

Systems” (in Polish “Bezpieczeństwo rozproszonych 

systemów pomiarowo-sterujących (RSPS)”, Przegląd 

Elektrotechniczny, vol. LXXXIV, no. 5, (2008), pp. 220-227. 

[9] Crypto-G: cryptographic library for LabVIEW, 

http://www.vartortech.com/cryptog.html 

[10] NTL: A Library for doing Number Theory, 

http://www.shoup.net/ntl/ 


	PagNum458: 458
	ISBN458: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum459: 459
	PagNum460: 460
	PagNum461: 461
	PagNum462: 462
	PagNum463: 463


