
XIX IMEKO World Congress

Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

LARGE NUMBER LIBRARY – THE NEW LABVIEW TOOL FOR SECURE

MEASUREMENT SYSTEMS

Piotr Bobiński

1
, Wiesław Winiecki

2

1
Warsaw University of Technology, Warsaw, Poland, P.Bobinski@ire.pw.edu.pl

2
Warsaw University of Technology, Warsaw, Poland, W.Winiecki@ire.pw.edu.pl

Abstract − The paper presents the proposal of a new

mathematical tool for LabVIEW environment – the Large

Number Library. After the short introduction describing the

security issue in the Distributed Measurement-Control

Systems (DMCS), the most popular asymmetric encryption

algorithms (public-key encryption algorithms) are described

in order to demonstrate the need for developing such a

library. The LN library was implemented in two variants:

the native LabVIEW code (G language) and using external

software modules (DLLs). The algorithms implemented in

both alternatives have been developed basing on the

Number Theory Library (NTL) – Victor Shoup’s open

source library. The results of accuracy and efficiency tests

for several functions implemented in both variants are

shown. The developed LN library will allow for the creation

of the advanced cryptographic libraries dedicated to the

LabVIEW environment, enabling the development of secure

communication channels in DMCS and information security

of DMCS networks.

Keywords: Large Numbers, LabVIEW, public-key

encryption systems.

1. INTRODUCTION

The modern applied metrology is integrally linked with

other fast-growing domains, such as computer technology,

data processing and telecommunications. Adaptation of the

information systems’ techniques for the needs of

measurement systems created a new interdisciplinary field

dealing with Distributed Measurement-Control Systems

(DMCS). Elements of DMCS (nodes) are distributed

territorially, connected via wired or wireless network and

able to exchange information between each other. Currently

the research in the area of DMCS is focused on the

applicability issues and adapting of new information and

communication technologies for such systems [8].

Nowadays, a very important issue in DMCS technology

ensures the safety of communication. In many cases, the

success of often costly experiments or missions and also the

biological and economical security depends on the proper

functioning of such systems. Due to the still growing

integration with telecommunications and general public

computer networks, the security of distributed measurement

systems has been dramatically reduced. In many DMCS the

information security of the network becomes one of the

major development problems. Information security issues

are also very important (because of the specific openness of

such systems, and ease of attack) in the wireless and mobile

DMCS systems. Since the nodes of DMCS can be both so-

called Measuring Servers, usually based on PCs with huge

processor power, as well as mobile wireless sensors

powered from battery, the existing disparity of calculation

power makes another important issue for the development of

common methods, ensuring the safety of DMCS. Therefore

there is an urgent need to develop proper methods and tools

to ensure the safety and security of these systems [1, 8].

The software plays nowadays a huge role in

measurement systems and very often determines their

quality. The growing processors’ computing power and

memory capacity allows for the development of more

complex software. An important issue becomes the creation

of new methods and software tools for designing distributed

measurement systems, and in particular low-cost and easy-

to-use libraries and tools for designing software that

provides secure exchange of information independently of

used information and communication infrastructure.

Existing software design tools dedicated for DMCS,

integrated software environments such as LabVIEW,

LabWindows/CVI, HPVEE, enable simple and flexible

development process of applications, but among others do

not include libraries for secure data exchange. The security

problem was only slightly considered which has resulted in

the introduction of certain access control mechanisms to

certain parts of an application (front panels and their

components) based on login and password identification

system. But there is no use of cryptographic methods, and

the information between nodes is sent explicitly, mostly as a

plain text.

Therefore, it seems necessary to develop a complete

library of functions, programs and tools tailored to specific

programming environments, which would give the

application or system developer the opportunity to design

and simulate secure and safe distributed measurement

system in an easy and intuitive way. These additives should

help to ensure safe transmission of data in any

communication infrastructure and the creation of

mechanisms for authentication and integrity of both

measurement and control data.

In the previous work, the authors have analyzed the

LabVIEW environment capabilities for efficient

implementation of cryptographic algorithms [1]. The next

phase of the work, described in this paper, is to develop new

mathematical tool for LabVIEW environment - a Large

Number library (also known as Big Integer or arbitrary

length integer library). This library allows for the

computation on numbers with arbitrary (within the limits of

available memory) number of decimal digits, far exceeding

the typical representation in computer systems (32 or 64

bit). Large numbers are widely used in many popular

cryptographic algorithms, including RSA, Rabin or ElGamal

public-key encryption systems, used for both, data

encryption and the generation of secure digital signatures [2,

3]. The LN library in addition to basic arithmetic operation

includes operation modulo N in the suitable rings or finite

bodies, functions for calculating the opposite element in

such algebras and primality test algorithms.

This paper presents a proposal of the implementation of

Large Number library for LabVIEW environment. The main

aim of this paper is to show different ways of implementing

cryptographic algorithms in the LabVIEW environment, and

to give tools that will be helpful for further work, that is for

the implementation of specific algorithms. The paper also

provides basic theoretical knowledge about public-key

encryption systems, which are claimed to be useful in

creating safe and secure DMCS. Such a short tutorial should

be helpful for better understanding of the topic. The paper is

organized as follows. In the section 2 we present the most

popular asymmetric encryption algorithms (public-key

encryption algorithms) and show the need for developing

library which can deal with large numbers. Next, we shortly

brief the Number Theory Library, developed by Victor

Shoup [7,10], which will be used as a reference software (in

section 3) and the Crypto-G library for LabVIEW [9], which

is not sufficient for practical use, due to the lack of

asymmetric encryption systems (in section 4). In section 5

we present the implementation issues of our LN library in

two variants: first in the native LabVIEW graphical

language, second based on the external modules

implemented in C++. Then, in section 6, we show the results

of accuracy and efficiency tests for both alternatives. In the

last section we conclude our work and give the

recommendations for further work – implementation of

cryptographic tools library for LabVIEW environment.

2. PUBLIC-KEY ENCRYPTION SYSTEMS

Public key cryptography is a method of encrypting

messages using a nonsecret (public) key. The term public

key cryptography also includes various others cryptographic

methods using a public key, such as authentication, digital

signature schemes, and key agreement [2, 3].

Preliminary analysis of the distributed measurement

system for introducing elements of cryptography concludes

that one of the main problems may be the disproportion in

power consumption between different types of system

nodes, such as servers and mobile measurement sensors.

Therefore in this section we focus first on the asymmetric

cryptographic systems, also known as public key encryption

systems [1, 8].

In public-key encryption systems, each entity A has a

public key e and a corresponding private key d. In secure

systems, the task of computing d given e is computationally

infeasible. The public key defines an encryption

transformation Ee, while the private key defines the

associated decryption transformation Dd. Any entity B

wishing to send a message m to A obtains an authentic copy

of A’s public key e, uses the encryption transformation to

obtain the ciphertext c = Ee(m), and transmits c to A. To

decrypt c, A applies the decryption transformation to obtain

the original message m = Dd(c) [4].

The public key need not be kept secret, and, in fact, may

be widely available – only its authenticity is required to

guarantee that A is indeed the only party who knows the

corresponding private key. A primary advantage of such

systems is that providing authentic public keys is generally

easier than distributing secret keys securely, as required in

symmetric key systems.

Public-key encryption schemes are typically

substantially slower than symmetric-key encryption

algorithms such as DES. For this reason, public-key

encryption is most commonly used in practice for the

transport of keys subsequently used for bulk data encryption

by symmetric algorithms and other applications including

data integrity and authentication, and for encrypting small

data items such as credit card numbers and PINs. Public-key

decryption may also provide authentication guarantees in

entity authentication and key establishment protocols. The

main advantage of public key encryption systems used for

distributed measurement systems is asymmetric

computational power requirement for both sides: encryption

and decryption, which can fit the DMCS architecture.

A public key encryption scheme is comprised of three

algorithms: a key generation algorithm, an encryption

algorithm and a decryption algorithm [2, 3]. In the next

three subsections, the most popular asymmetric encryption

algorithms will be presented with particular emphasis on

arithmetic operations that need to be done for arbitrary

length integers.

2.1 RSA public-key encryption

The RSA cryptosystem, named after its inventors R.

Rivest, A. Shamir, and L. Adleman, is the most widely used

public-key cryptosystem. It may be used to provide both

secrecy and digital signatures and its security is based on the

intractability of the integer factorization problem. This

section briefly describes the RSA encryption scheme, notes

on its security and some implementation issues can be found

in the literature [3, 4].

Key generation for RSA public-key encryption
Each entity A should do the following:

• Generate two large random primes p and q, each roughly

the same size.

• Compute n = pq and k = (p − 1)(q − 1).

• Select a random integer e, 1 < e < k, gcd(e, k) = 1.

• Compute the unique integer d, 1 < d < k, such that

• ed ≡ 1 (mod k).

• A’s public key is (n, e); A’s private key is d.

RSA public-key encryption algorithm

Encryption. B should do the following:

• Obtain A’s authentic public key (n, e).

• Represent the message as an integer m in [0, n − 1].

• Compute c = me mod n.

• Send the ciphertext c to A.

Decryption. To recover plaintext m from c, A should do the

following:

• Use the private key d to recover m = cd mod n

Given the latest progress in algorithms for factoring

integers, a 512-bit modulus n provides only marginal

security from concerted attack. For long-term security,

1024-bit or larger modulus should be used.

In order to improve the efficiency of encryption, it is

desirable to select a small encryption exponent e such as e =

3. A group of entities may all have the same encryption

exponent e, however, each entity in the group must have its

own distinct modulus. Thus a small encryption exponent

such as e = 3 should not be used if the same message, or

even the same message with known variations, is sent to

many entities. Alternatively, to prevent against such an

attack, a pseudorandomly generated bitstring of appropriate

length should be appended to the plaintext message prior to

encryption; the pseudorandom bitstring should be

independently generated for each encryption (so called

“salting the message”) [4].

As was the case with the encryption exponent e, it may

seem desirable to select a small decryption exponent d in

order to improve the efficiency of decryption.

2.2 Rabin public-key encryption

The Rabin public-key encryption scheme was the first

example of a provably secure public-key encryption scheme

– the problem faced by a passive adversary of recovering

plaintext from some given ciphertext is computationally

equivalent to factoring [4, 6].

Key generation for Rabin public-key encryption

Each entity A should do the following:

• Generate two large random primes p and q, each roughly

the same size.

• Compute n = pq.

• A’s public key is n; A’s private key is (p, q).

Rabin public-key encryption algorithm

Encryption. B should do the following:

• Obtain A’s authentic public key n.

• Represent the message as an integer m in [0, n − 1].

• Compute c = m
2
 mod n.

• Send the ciphertext c to A.

Decryption. To recover plaintext m from c, A should do the

following:

• Find the four square roots (from m1 to m4) of c mod n.

• The message sent was either m1, m2, m3, or m4. A

somehow decides which of these is m.

Note: there exists simple algorithm for finding square roots

of c mod n = pq when p ≡ q ≡ 3 (mod 4)

Rabin encryption is an extremely fast operation as it only

involves a single modular squaring. By comparison, RSA

encryption with e = 3 takes one modular multiplication and

one modular squaring. Rabin decryption is slower than

encryption, but comparable in speed to RSA decryption.

2.3 ElGamal public-key encryption

The ElGamal public-key encryption scheme can be

viewed as Diffie-Hellman key agreement in key transfer

mode. Its security is based on the intractability of the

discrete logarithm problem and the Diffie-Hellman problem

[4, 6]. The basic ElGamal is shown below, the generalized

ElGamal encryption schemes can be found in [4].

Key generation for ElGamal public-key encryption

Each entity A should do the following:

• Generate a large random prime p and a generator k of the

multiplicative group Zp of the integers modulo p.

• Select a random integer a, 1 ≤ a ≤ p − 2, and compute k
a

mod p.

• A’s public key is (p, k, k
a
); A’s private key is a.

ElGamal public-key encryption algorithm

Encryption. B should do the following:

• Obtain A’s authentic public key (p, k, k
a
).

• Represent the message as an integer m in [0, p − 1].

• Select a random integer i, 1 ≤ i ≤ p − 2.

• Compute j = k
i
 mod p and l = m · (k

a
)

i
 mod p.

• Send the ciphertext c = (j, l) to A.

Decryption. To recover plaintext m from c, A should do the

following:

• Use the private key a to compute j
p−1−a

 mod p.

• Recover m by computing (j
−a

) · l mod p.

3. NTL LIBRARY

Number Theory Library is a high-performance, portable

C++ library providing data structures and algorithms for

arbitrary length integers; for vectors, matrices, and

polynomials over the integers and over finite fields; and for

arbitrary precision floating point arithmetic [10].

NTL provides high quality implementations of state-of-

the-art algorithms for:

• arbitrary length integer arithmetic and arbitrary precision

floating point arithmetic;

• polynomial arithmetic over the integers and finite fields

including basic arithmetic, polynomial factorization,

irreducibility testing, computation of minimal

polynomials, traces, norms, and more;

• lattice basis reduction, including very robust and fast

implementations of Schnorr-Euchner, block Korkin-

Zolotarev reduction, and the new Schnorr-Horner pruning

heuristic for block Korkin-Zolotarev;

• basic linear algebra over the integers, finite fields, and

arbitrary precision floating point numbers.

NTL provides a clean and consistent interface to a large

variety of classes representing mathematical objects. It

provides a good environment for easily and quickly

implementing new number-theoretic algorithms, without

sacrificing the performance.

NTL is written and maintained by Victor Shoup with

some contributions made by others. NTL is free software,

and may be used according to the terms of the GNU General

Public License.

3.1 Large Numbers’ representation in NTL

The class ZZ is used to represent signed arbitrary length

integers. Routines are provided for all of the basic arithmetic

operations, as well as for some more advanced operations

such as primality testing. Space is automatically managed by

the constructors and destructors. This module also provides

routines for generating small primes, and fast routines for

performing modular arithmetic on single-precision numbers.

One can compute with ZZs much as with the regular data

types, in that most of the standard arithmetic and assignment

operators can be used in a direct and natural way. The C++

compiler and the NTL library routines automatically take

care of all the bookkeeping involved with memory

management and temporary objects.

For every function in NTL, there is a procedural version

that stores its result in its first argument. The reason for

using the procedural variant is efficiency: using an operator

usually causes a temporary ZZ object to be created and

destroyed, whereas the procedural version will not create

any temporaries. Where performance is critical, the

procedural version is to be preferred [10].

4. LABVIEW AND CRYPTO-G LIBRARY

It is well known that the LabVIEW environment has

built in the huge number of libraries and programming tools.

However, the lack of elements related to security of

information systems, prevents the possibility of creating

secure, cryptographic systems. In addition, well equipped

mathematical library, have some limitations that prevent the

efficient implementation of specific cryptographic

algorithms. The basic problem is limited to 32 bits, from

version 8.0 increased to 64 bits, integer numbers precision.

This limitation prevents, among others, for the immediate

implementation of secure encryption algorithms with public

key, in which the huge primes are used (for example primes

with one hundred digits).

After the analysis of the on-market availability of

existing cryptographic solutions for LabVIEW environment,

the Crypto-G library was found [9]. This library, provided

by the VARTOR Technology Solutions as a shareware, is

treated as unauthorized by National Instrument set of tools

for LabVIEW environment (LabVIEW Toolkit). Crypto-G

is advertised as the most comprehensive cryptographic

library for LabVIEW and contains over 50 functions

(Virtual Instruments) including the following functions:

• Symmetric Encryption

- Advance Encryption Algorithm (AES)

- Data Encryption Algorithm (DES)

- SKIPJACK, TEA, BLOWFISH

• Hashing

- Secure Hash Algorithm (SHA-1)

- Message Digest 2 and 5 (MD2, MD5)

• Message Authentication

- Keyed-Hashed Message Authentication (HMAC)

- Data Authentication Code (DAC)

- Random Number Generators (Based on SHA-1)

• Several Miscellaneous VIs

- Large Numbers library (Beta)

- Key Exchange Algorithm (KEA) (Beta)

Nevertheless, a set of encryption algorithms that is

available in the Crypto-G library is rather small. The

encryption algorithms are limited to a few systems with a

private key, the public key systems are not implemented at

all, a shortcut functions are limited to three, in the version

without the key. The lack of public key encryption

algorithms is probably the result of issues discussed earlier,

namely the limited numbers’ precision. Although the library

contains a Large Number sub-palette, it is only the pre-

release version (so called beta version) which is incomplete,

inefficient and contains many errors.

As it was said in the introduction in the previous work,

the authors have analyzed the LabVIEW environment

capabilities for efficient implementation of cryptographic

algorithms [1]. On the basis of the conclusions of that

analysis and due to the issues presented above, the authors

decided to develop a new tool for LabVIEW environment - a

Large Number Library. This library allows for the

computation on numbers with arbitrary (within the limits of

available memory) number of decimal digits and would

allow one to build asymmetric cryptographic systems for

both, data encryption and the generation of secure digital

signatures.

5. LN LIBRARY FOR LABVIEW ENVIRONMENT

5.1 Large Numbers’ representation

The integers of arbitrary length can be represented in

many ways. First of all they are not negative numbers in

range from 0 to LNmax limited by the maximum number of

digits (e.g. 256 or more). To make implementation the most

elegant and efficient, the large number is represented as an

array of bytes, which are present in LabVIEW as unsigned,

8-bit integers. Every byte acts as a digit in the 256-based

system. The bytes are placed in the little-endian order, that

means the first array element (index 0) represents weight

256
0
, the next (index 1) 256

1
, and the last (index k) 256

k
.

5.2 Used algorithms

The theory and implementation notes for both, integer

and modular multiple-precision arithmetic algorithms can be

found in [4, 7] and also in the source files of NTL library

[10]. For example, the multiple-precision addition algorithm

is shown below [4].

Multiple-precision addition

INPUT: positive integers x and y, each of n + 1 base b

digits.

OUTPUT: the sum x + y = (wn+1wn· · · w1w0)b in radix b

representation.

1. c ← 0 (c is the carry digit).

2. For i from 0 to n do the following:

2.1. wi (xi + yi + c) mod b.

2.2. If (xi + yi + c) < b then c ← 0; otherwise c ← 1.

3. wn+1 ← c.

4. Return((wn+1wn· · · w1w0)).

5.3 List of implemented functions

All libraries’ elements can be divided into several

categories. All categories and functions are listed in Table 1.

Table 1. List of functions implemented in LabVIEW LN Library.

Arithmetic functions

LN_Add adds two LN arguments

LN_Subtract
subtracts two LN arguments (returns

underflow if the result is negative)

LN_Multiply multiplies two LN arguments

LN_Divide
divides two LN arguments (returns

quotient and reminder)

LN_Square raises one LN argument to the square

LN_RightShift
shifts right one LN argument (division

by 2)

LN_LeftShift
shifts left one LN argument

(multiplication by 2)

Comparison functions

LN_Equal_0 tests if argument is equal 0

LN_Equal tests if two arguments are equal

LN_Greater
tests if one argument is grater (or

optionally equal) than other

Modular arithmetic functions

LN_Modulus
calculates the integer reminder of two

LN arguments

LN_NegateModulo
calculates the negative of one LN

argument modulo second LN argument

LN_AddModulo
calculates the sum of two LN

arguments modulo third LN argument

LN_SubtractModulo
calculates the difference of two LN

arguments modulo third LN argument

LN_MultiplyModulo
calculates the product of two LN

arguments modulo third LN argument

LN_SquareModulo

calculates the one LN argument raised

to the square modulo second LN

argument

LN_PowerModulo

calculates the one LN argument raised

to the second LN argument modulo

third LN argument

LN_InverseModulo

calculates the inverse (if exists) of one

LN argument modulo second LN

argument or the GCD of two LN

arguments (otherwise)

Random number generation and primality test

LN_PRNG
generates a set of pseudo-random large

numbers

LN_PrimalityTest tests if LN argument is a prime number

Utility functions

LN_LN2String
converts LN argument into decimal

string

LN_String2LN converts decimal string into LN number

5.4 Implementation details

During the development, all previously mentioned

functions were implemented in two variants and the

accuracy and effectiveness of both alternatives was tested.

The results should give the recommendations for further

work, namely for the implementation of asymmetric

cryptographic systems such as RSA, Rabin or ElGamal

systems. The two ways of implementation are the results of

previously made analysis, and are as follows:

• implementation in the native LabVIEW graphical

language G (see fragment of the block diagram of

LN_Add function in Fig. 1);

• implementation using the external software modules

written in C++ (with sources from NTL library) and

compiled into a DLL (see fragment of code of Add

function below).

// fragment of Add function

pc = c;

carry = 0;

do {

 long t = (*(++a)) + (*(++b)) + carry;

 carry = t >> NTL_NBITS;

 *(++pc) = t & NTL_RADIXM;

 i--;

} while (i);

// end of code fragment

Fig. 1. Fragment of the block diagram of LN_Add function.

To ensure compliance with established types of large

numbers representation in the LabVIEW environment and

because of the limitations of possible data types that can be

transmitted through the Call Library Function Node, in all

functions exported from a DLL library, the conversion

between objects of class ZZ and byte arrays was made.

6. TESTS RESULTS

In order to examine the accuracy and effectiveness of the

developed functions, in both implementation variants, the

proper test applications were built. The test applications

were designed in a way that allows not only functional

validation of implemented operations but also could

measure the execution time for every function. Due to the

specificity of the tested library, two test applications were

developed: one for arithmetic operations (including

reduction modulo N) and the other one for the modular

arithmetic operations. In each of them the tested functions

were run in the loop, for randomly generated input data.

All the library functions and tests applications were

developed in the LabVIEW environment in version 8.5,

external modules were written in C++ and compiled to a

DLL in a Microsoft Visual C++ 2005 Express Edition

environment. The execution times were obtained by

measuring the timestamps within the code. The timestamp

measurements were conducted for executables built with

Application Builder tool.

Experimental results for basic integer and modular

arithmetic functions are shown in Table 2 and in Table 3,

respectively. Tables contain execution times in seconds, for

1 million iterations, for input numbers contained of 10 and

100 digits (T10 and T100 respectively). For modular

arithmetic the modulus contained two times more digits than

the arguments (quite typical situation for public key

algorithms). The results of our functions (bold font) are

compared to the DLL version (the prefix “extern”) and the

original Crypto-G version (the prefix “crypto”).

Table 2. Test results of integer arithmetic functions.

Function name T10 [s] T100 [s]

LN_Add 5,3 7,5

extern_LN_Add 4,1 5,5

crypto_LN_Add 7,8 10,5

LN_Subtract 4,3 7,4

extern_LN_ Subtract 3,5 5,4

crypto_LN_ Subtract 30,9 37,4

LN_Multiply 5,8 143,3

extern_LN_Multiply 4,1 10,4

crypto_LN_Multiply 9,1 144,8

Table 3. Test results of modular arithmetic functions.

Function name T10 [s] T100 [s]

LN_AddModulo 14,2 20,1

extern_LN_AddModulo 5,3 9,1

crypto_LN_AddModulo 417,9 322,4

LN_SubtractModulo 9,0 15,3

extern_LN_ SubtractModulo 10,4 13,4

crypto_LN_ SubtractModulo 7088,3*) not tested

LN_MultiplyModulo 18,9 153,1

extern_LN_MultiplyModulo 5,3 12,9

crypto_LN_MultiplyModulo 1577,1 1398,3

*) enormous execution time and also incorrect results

The analysis of the presented results leads to the

following conclusions.

• Our Large Number library is in general much more

efficient than the beta version of Crypto-G solution (in

particular for the modular functions).

• Addition and subtraction functions written in G code are

in general only a little bit slower than the external

versions for both, the integer and modular version.

• Our multiplication functions written in G code are much

slower than the external versions, especially for input data

with great number of digits. This is probably due to yet

not optimized memory operations and used classical

algorithms (in the future we plan to implement more

efficient algorithms, like Karatsuba multiplication [4]).

• Our modular multiplication functions for typical large

numbers (about one hundred decimal digits) are much

slower then DLL version but still almost one order of

magnitude faster than the Crypto-G version.

7. CONCLUSIONS

Paper concerns the field of Distributed Measurement-

Control Systems and in particular communication security

issue in such systems. The huge role of the software in

DMCS is shown, and the need to develop some

cryptographic tools for such systems is presented. These

tools would give the DMCS’ developers the opportunity to

design secure systems in an easy and intuitive way. The

paper provides basic theoretical knowledge about public-key

encryption systems which are claimed to be useful to create

safe and secure DMCS. The main goal of the paper is to

present the new mathematical tool for LabVIEW, the Large

Numbers library, which is necessary for further

implementation of specific, asymmetric algorithms such as

RSA or Rabin encryption systems. The LN library was

implemented in two variants: using only native LabVIEW

code (G language) and using external software modules

(DLLs). Implemented functions were tested and the tests’

results lead to the following conclusions.

There is a possibility to implement the Large Number

library in pure G code. The efficiency of such a solution

could be quite similar to the version using external software

modules when the fast algorithms are used and some code

optimization steps are performed. The Large Number library

written in pure G code can be used not only in DMCS’ PC-

based modules but also in FPGA-based hardware solutions

which can be programmed directly from the LabVIEW

environment (using the LabVIEW FPGA Module).

REFERENCES

[1] P. Bobiński, W. Winiecki, “LabVIEW Capabilities Analysis

for Cryptographic Algorithms Implementation” (in Polish

“Analiza moŜliwości wykorzystania środowiska LabVIEW

do implementacji algorytmów kryptograficznych”, Przegląd

Elektrotechniczny, vol. LXXXIV, no. 5, (2008), pp. 228-231.

[2] Henk C., A. van Tilborg (Ed.), Encyclopedia of

Cryptography and Security, Springer, 2005

[3] N. Koblitz, A Course in Number Theory and Cryptography,

Springer Verlag, New York, 1994.

[4] Menezes, P. Oorschot, S. Vanstone, Handbook of Applied

Cryptography, CRC Press Inc., 1997.

[6] Schneier B, Applied Cryptography Second Edition:

protocols, algorithms, and source code in C, John Wiley &

Sons, 1996

[7] V. Shoup, A Computational Introduction to Number Theory

and Algebra, Cambridge University Press, Cambridge 2005.

[8] W. Winiecki, T. Adamski, P. Bobiński, R. Łukaszewski,

“Security of Distributed Measurement and Control

Systems” (in Polish “Bezpieczeństwo rozproszonych

systemów pomiarowo-sterujących (RSPS)”, Przegląd

Elektrotechniczny, vol. LXXXIV, no. 5, (2008), pp. 220-227.

[9] Crypto-G: cryptographic library for LabVIEW,

http://www.vartortech.com/cryptog.html

[10] NTL: A Library for doing Number Theory,

http://www.shoup.net/ntl/

	PagNum458: 458
	ISBN458: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum459: 459
	PagNum460: 460
	PagNum461: 461
	PagNum462: 462
	PagNum463: 463

