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Abstract − We show that correlations in the estimate of 

the impulse response of ultrafast sampling oscilloscopes 
might play an important role for uncertainty evaluations. 
This is demonstrated by determining the uncertainty 
associated with the estimate of the oscilloscope’s input 
signal which is calculated using the output signal of the 
oscilloscope and the impulse response. We observe that the 
resulting uncertainty depends on the size of the correlation 
in the impulse response and we conclude that such 
correlations should be accounted for in an uncertainty 
analysis. 
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1. INTRODUCTION 

Ultrafast sampling oscilloscopes are routinely used for 
precise measurements of microwave waveforms and the 
characterization of high-speed electronics. Such instruments 
are an ideal tool for this purpose since they are portable, 
easy to use and relatively inexpensive. They can be 
modelled by a linear time invariant (LTI) system which is in 
general characterized by its impulse response or step 
response.  

For the measurement of the time response of ultrafast 
sampling oscilloscopes it is necessary to employ even faster 
measurement methods. Optoelectronic sampling techniques 
are well suited for this purpose. Based on such techniques 
the rise time of the step response of ultrafast sampling 
oscilloscopes is routinely measured [1,2,3]. Recently, much 
effort has been spent to extend this single parameter 
characterization to the measurement of complete time or 
frequency domain responses, which is referred to as 
waveform metrology. NIST has developed a combined 
electric/optoelectronic approach in which the complex 
transfer function of a sampling oscilloscope is measured up 
to 110 GHz [4]. In that analysis the uncertainty is 
propagated using covariance matrices and linearized 
propagation functions [5]. PTB has just presented a 
technique in which the step response of a sampling 
oscilloscope is fully characterized in a 100 ps time window 
[6]. These results can be used to calculate the oscilloscope’s 
input signal from its output signal, significantly reducing 
dynamic errors. 

In this paper we discuss the significance of correlations 
in the estimate of the impulse response of sampling 

oscilloscopes for a subsequent use in the estimation of the 
input signal. We perform proof-of-principle calculations and 
show that correlations can have a significant effect. We 
conclude that correlations should be considered when an 
estimate of the impulse response is employed for the 
analysis of oscilloscope measurements.  

2. MEASUREMENT UNCERTAINTY 

The information provided by a measurement can be seen 
complete only if it is stated together with its accuracy. In 
terms of metrology – the science of measurement – this 
accuracy parameter is the measurement uncertainty. An 
international guideline for uncertainty evaluation is the 
Guide to the Expression of Uncertainty in Measurement 
(GUM) [7]. A key feature of the GUM is the propagation of 
uncertainty which describes how uncertainties associated 
with the available estimates of all influencing quantities 
affect the uncertainty of the resulting estimate of the 
measurand. Assuming a model for the measurand with all 
influencing input quantities incorporated, this propagation 
can be computed by linearization as explained in [7]. 
Although the GUM does not state uncertainty evaluation for 
dynamic measurements explicitly, the guidelines can be 
applied for time-domain analysis, [8].  

A recently published supplement to that guideline, GUM 
S1 [9], which we adopt in this paper, replaces the 
propagation of uncertainty by a propagation of (degree-of-
belief) probability density functions (PDFs). Given the 
model equation of the measurand and the (joint) PDF 
associated with all input quantities, the PDF assigned to the 
measurand is then obtained according to the rules of 
probability theory and it also incorporates possible non-
linearities in the evaluation process. The numerical 
calculation of this PDF can be easily done by a Monte-Carlo 
procedure [9]. 

When the information on the input quantities is 
independent, the joint PDF on all input quantities factorizes 
into the product of single PDFs assigned to each input 
quantity. In this case, the estimates ji qq ˆ,ˆ , say, of the 

different input quantities ji qq ,  are uncorrelated, i.e., 

  0)ˆ()ˆ(/)ˆ,ˆ()ˆ,ˆ( == jijiji ququqquqqρ .  (1) 

However, this is not always the case and presence of a 
correlation needs to be accounted for in order to derive a 
reliable uncertainty for the estimate of the measurand. More 



precisely, we will show that when an estimate )(ˆ th  of the 

impulse response )(th  is used to estimate the oscilloscope’s 

input signal, the correlation ))(ˆ),(ˆ( ji ththρ  at different times 

can play an important role for the size of the resulting 
uncertainty. Hence, such correlation needs to be determined 
when the impulse response is estimated from measurements. 

3. BASICS OF OSCILLOSCOPE CALIBRATIONS 

In this section we introduce some well-known basics 
required for the understanding of the uncertainty evaluation 
presented in section 4. The impulse response )(th  of a 

system corresponds to its output for a unit impulse input 
signal and fully characterizes the time-domain behaviour of 
the system. For a general input signal )(tx  the 

corresponding output signal )(ty  results from the 

convolution of the input signal with the impulse response 

 ))(()( thxty ∗=   . (2) 

An integration of the impulse response results in the step 
response. The rise time of a system is usually defined as the 
difference of the 90 % and 10 % quantile of the normalized 
step response [1]. Early characterization techniques for 
ultrafast sampling oscilloscopes focused on this quantity as 
a single parameter characterization that expresses the speed 
of the oscilloscope. Recently, new analysis techniques have 
been developed which focus on the measurement of the 
whole step response (or transfer function) and not just on a 
single parameter [4,6]. Such measurements are referred to as 
waveform metrology.  

We have performed some simple model calculations to 
illustrate the importance of waveform metrology and show 
that such measurements considerably improve the 
characterization of sampling oscilloscopes as compared to 
single parameter characterizations. We focus on the impulse 
response, but of course the same effects are obtained if one 
considers the step response or the transfer function.  

 
In figure 1 the measured impulse response of a nominal 

70 GHz sampling oscilloscope is shown together with its 
uncertainty. The data were taken from reference [6].  

For a Gaussian pulse with a full-width-at-half-maximum 
(FWHM) of 4.4 ps as a model input signal (see solid line in 
the upper part of figure 2) we calculated the output of the 
oscilloscope using the best estimate of the impulse response 
according to equation (2). The resulting output signal is 
shown as dashed line in the upper part of figure 2. To realize 
the single parameter characterization we took a Gaussian 
impulse response with the same FWHM as the measured 
impulse response. An estimate of the oscilloscope’s input 
signal is then obtained by deconvolution of the output signal 
with the Gaussian impulse response. This estimate is shown 
as dotted line in the upper part of figure 2. The estimate 
shows significant dynamic errors, cf. lower part of figure 2. 
The maximum absolute value of the difference is larger than 
30 % of the maximum input signal amplitude, which clearly 
visualizes the need to perform full waveform metrology 
instead of a single parameter characterization.  

 

 

 

Fig. 2 Top: Input signal (solid line), resulting output (dashed line) 
and estimated input (dotted line) obtained from deconvolution of 
the output signal with Gaussian impulse response.  
Bottom: Relative error of estimation if only a single parameter 
characterization is applied. 

 

Fig. 1 Impulse response (solid line) with associated standard 
uncertainty (dashed lines) of a nominal 70 GHz sampling 

oscilloscope [6].  

 



 

4. INPUT ESTIMATION AND UNCERTAINTY 
EVALUATION 

We now focus on the uncertainty evaluation of an estimate 
of the oscilloscope’s input signal when it is determined from 
its output signal and the impulse response. This calculation 
extends the referenced methods [3-6] in that we consider the 
estimation of an input signal from the oscilloscope output 
signal including an uncertainty evaluation according to 
GUM S1. 

 In a first step we perform the calculation without 
considering correlations in the estimate of the impulse 
response. In a second step we demonstrate that correlations 
can lead to significant changes in the resulting uncertainties. 

The model equation for our calculations reads 

 
�
�
�

�
�
�

=
)(

)(
F)( 1-

ω
ω

H

Y
tx  , (3) 

where  

 
{ }

{ })(F)(

)(F)(

tyY

thH

=
=

ω
ω

 , (4) 

and F and F-1 denote Fourier and inverse Fourier 
transform. The input quantities are the oscilloscope’s output 
signal )(ty  and its impulse response )(th .  

For our calculations we use the measured impulse 
response and its associated uncertainty plotted in figure 1. 
As noted above the data belongs to a calibrated sampling 
oscilloscope with a nominal bandwidth of 70 GHz [6]. We 
take as input signal a Gaussian pulse with FWHM of 6 ps 
and compute the corresponding output signal )(ty  by 

multiplication with )(ωH  in the frequency domain. For the 

application of equation (2) it is necessary that |)(| ωH  is 

bounded from below at least in the frequency region which 
essentially contains the support of ( )Y ω . Thus, we here 

constrain our calculations to the frequency region from zero 
to 200 GHz where |)(| ωH  is known to be bounded from 

below and beyond which ( )Y ω  is sufficiently close to zero, 

see figure 3.  
For ease of presentation we here assume that )(ty  is 

known exactly, i.e., no noise has corrupted the 
oscilloscope’s output signal. With respect to )(th , we 

assume an estimate )(ˆ th  and an associated uncertainty 

))(ˆ( thu  is available for each time instant t. 

For the evaluation of measurement uncertainty according 
to GUM S1 a joint PDF is assigned to the discretized 
impulse response and propagated through the discretized 
model equation (3) to a PDF for the discrete input signal 
estimate. To this end, samples from the PDF of the impulse 
response are drawn repeatedly and propagated through the 
(discretized) model (3,4), thereby providing samples from 
the desired PDF of the input signal estimate. All calculations 

are done in the discrete time and frequency domain, and 
equations (3,4) are realized by the discrete Fourier transform 
(DFT) and its inverse. 

 

 

Fig. 3 Normalized magnitude spectrum of the oscilloscope’s 
output signal  

Firstly, we assume that no correlation between different 
times for the estimates of the impulse response is present. 
Hence, realizations of the impulse response for the Monte-
Carlo procedure are drawn by equation (5) where ntt ,,1�  

denote the considered discrete times and )ˆN(
ĥ

U,h  denotes 

a multivariate Gaussian distribution with expectation ĥ  and 
diagonal covariance matrix hU ˆ . 
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For each realization of kh  a corresponding input signal kx  

is calculated according to the discretized equation (3,4). The 
computation of a best estimate for the input signal as the 
mean and its associated squared uncertainty as the variance 
results in: 
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Figure 4 shows the resulting estimate and its associated 

uncertainty using 410M =  Monte-Carlo runs. As expected, 
the estimate ̂ ( )x t  coincides with the simulation input signal 

( )x t . Next, we extend the above analysis and consider 

correlations in the estimate of the impulse response. We 
assume that the uncertainty matrix hU ˆ  has the following 

artificial correlation structure 

 T)1( 11ICorr ⋅+−= ρρ  (7) 



where I denotes the identity matrix of dimension n and 1 an 
n-dimensional vector with all elements equal to 1. Thus, the 
covariance matrix hU ˆ  is computed based on the matrix 

equivalent of equation (1) which results in  

 ))1())((ˆ())(ˆ()( ˆ ρρδ +−= ijjiij thuthu
h

U  (8) 

with ijδ  being the Kronecker delta. The parameter 

]1,1[−∈ρ  equals the correlation between the estimates for 

the impulse response at sample times it  and jt , ji ≠ , see 

section 2. Furthermore, the diagonal elements of hU ˆ  are the 

same as before, while the off-diagonal entries are 
determined by the condition (7) and controlled by the choice 
of ρ . Note that for 0=ρ  no correlation is present, and the 

same results as above are obtained.  

 

Fig. 4 Estimate of input signal and associated uncertainty. 

The calculation scheme for the GUM S1 uncertainty 
evaluation is the same as for the uncorrelated case, i.e., 
samples for the impulse response are likewise drawn 
according to equation (5). Note, however, that now the 
covariance matrix of the Gaussian distribution in equation 
(5) is no longer diagonal but replaced by the corresponding 
non-diagonal uncertainty matrixhU ˆ . The resulting estimates 

are similar to that shown in figure 4, but their uncertainties 
show a significant dependence on the correlation, cf. figure 
5.  

 

Fig. 5 Result of GUM S1 uncertainty evaluation of the input 
signal for three different correlation patterns. 

For increasing correlation the resulting uncertainty also 
grows. Note that the shape of the uncertainty does not 
change, but only its absolute value. This results from the 
correlation structure of the impulse response which induces, 
especially in the low-frequency region, an increase of the 
uncertainty of the transfer function )(ωH  for increasing 

correlation parameter ρ . Figure 5 shows that already small 

correlations in the impulse response may significantly 
influence the uncertainty of the input signal estimate.  

5. CONCLUSION 

We have demonstrated the significance of correlations in 
a measured impulse response for uncertainty evaluations of 
ultrafast sampling oscilloscope measurements. Our proof-of-
principle simulations show that such correlations affect the 
uncertainty evaluation of the oscilloscope’s input signal 
which is calculated using the output signal of the 
oscilloscope and its impulse response. We hence conclude 
that correlations need to be considered for a full 
characterization of the time response of ultrafast sampling 
oscilloscopes.  
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