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Abstract − The paper presents the implementation of the 

Advanced Encryption Algorithm (AES) in the measurement 
system, where the virtual instruments equipped with the 
multi-core processors are used. The encryption algorithm is 
first presented, then its modification to take advantage over 
the multi-core processor is described. Implementation of the 
latter in the virtual instrument working under the Real-Time 
(RT) mode is presented. Finally, test vectors are used to 
verify the validity of the modified algorithm and comparison 
between the traditional algorithm and the version using the 
parallel computations is performed. 

Keywords: virtual instrumentation, cryptography, Real-
Time systems 

1.  INTRODUCTION 

The influence of the computer technologies on the 
modern measurement systems is steadily increasing. 
Multiple solutions not only allow connecting the traditional 
devices to the computers, but require the computer network 
or processors to perform calculations on the acquired data. 
As the distributed measurement systems are a common 
implementation, the problem becomes the security of the 
data transferred between the nodes of the system. The 
threats related to the traditional computer network are well 
identified and complete software and hardware solutions 
were implemented. Security of the distributed measurement 
systems is still not clearly defined, but numerous incidents 
indicate that in the near future all the data in such a system 
will have to be secured from the unauthorized access. The 
most popular method of the data security is the 
implementation of the cryptographic algorithms. In the 
measurement systems involving the software (for example, 
virtual instruments - VI), implementation of the algorithm in 
the application run by the processor is the correct approach. 

The measurement system can be supplemented with the 
encryption schemes in two ways, related to its structure. 
Generally, there are two types of the nodes. The first one are 
measurement nodes, where the data acquisition (DAQ) 
operations are performed. They are usually sensory 
networks or general purpose computers equipped with the 
DAQ hardware, etc. The nature of the measurements 
depends on the character of the analyzed phenomenon: 
temperature, pressure, voltage, current and similar. When 

the measured quantities are converted into the form 
acceptable by the computer system, they must be sent to the 
second element of the system, i.e. data processing server. It 
is the central node of the system, responsible for storing the 
gathered information and performing the data processing. 
The scheme of the system is presented in Fig. 1. 

 

 

Fig. 1.  Architecture of the distributed computer measurement 
system. 

Introduction of the encryption schemes into the system is 
asymmetric. When the DAQ nodes gather measured data, 
they must be encrypted before sending to the server. 
Unfortunately, a very limited computing power is available 
here, such as single core processors of lower frequencies. 
The cryptographic algorithms are usually computationally 
expensive, and may be difficult to implement in the small 
microcontrollers, such as Intel 8051. On the other side there 
is the high performance computing machine working as a 
server. Although it has greater processing abilities, its 
responsibility is the simultaneous decryption of the 
measurement data sent from multiple nodes and encryption 
of the configuration data sent to them.  

It is often important to acquire the data from the sensors 
and process them within the predefined time limits. To 
ensure such determinism, the RT system is needed. The 
latter can easily be implemented on the server (personal 
computer), and operate the measurement application 
designed in on of the integrated programming environments, 
such as National Instruments LabVIEW, or Agilent VEE. 
One of the newest achievements in the measurement 
systems is the ability to use the multi-core processors in the 
RT mode. This gives the opportunity to increase the speed 



of computations and overcome the problem of the RT data 
processing. 

The paper presents the implementation of the AES 
algorithm in the RT measurement server. The former was 
designed using the LabVIEW environment and run on the 
four-core Intel processor. Organization of the paper is as 
follows. In section 2 the AES algorithm is presented. 
Section 3 contains discussion of the modification of the 
original algorithm to take advantage of the multiple cores. In 
section 4 implementation of the algorithm in LabVIEW 
environment is described. Section 5 contains the verification 
of the algorithm and measurements of its efficiency. In 
section 6 there are conclusions and future prospects. 

2.  THE AES ALGORITHM DESCRIPTION 

The AES algorithm is the most popular symmetric block 
cipher, approved by the National Institute of Standards and 
Technology in 2001 [1]. The purpose of the algorithm is to 
replace the older and less reliable algorithms, such as Data 
Encryption Standard (DES). The algorithm operates on the 
128-bit (16-byte) data blocks (called plain text, in the 
measurement system the latter can be represented by the 
acquired samples, arrays etc.) and uses 128-, 192-, or 256-
bit key to obtain 128-bit cipher. Application of the algorithm 
consists of encryption (transformation of the plain text into 
the cipher) and decryption (the opposite transformation). In 
both operations, the same key is used. The hardware and 
software requirements are relatively small, making the AES 
the most popular symmetric standard [2]. Therefore it can be 
successfully used in the simple measurement nodes of the 
distributed system, where sensors and DAQ hardware gather 
the desired quantities, then create blocks, encrypt them and 
send to the server. The implementation of the algorithm is 
based on the substitution-permutation network.  

2.1. AES encryption scheme 
The pseudocode for the AES encryption is presented in 

Fig. 1. It transforms the input data (IN – measurements) into 
the cipher (OUT) using the expanded key W. 

 
AEScipher(IN(4⋅Nb), OUT(4⋅Nb), W[Nb⋅(Nr+1)]) 
begin 
 state[4,Nb] = IN 
 AddRoundKey(state, W[0, Nb-1]) 
 for i = 1 to Nr-1 
  SubBytes(state) 
  ShiftRows(state) 
  MixColumns(state) 
  AddRoundKey(state, W[i⋅Nb, (i+1)⋅Nb-1]) 
 end 
 SubBytes(state) 
 ShiftRows(state) 
 AddRoundKey(state, W[Nr⋅Nb, (Nr+1)⋅Nb-1]) 
 OUT = state 
end 

Fig. 2. Pseudocode of the AES encryption [1]. 

where Nb is the number of the processed bytes (here four), 
Nr is the number of the algorithm’s iterations (depending on 
the length of the key, equal to 10, 12, or 14 respectively), IN 
is the 128-bits long plain text, OUT is the output vector 
(cipher, 128-bits long), W is the expanded key (the sequence 
of Nb⋅(Nr+1) bytes generated from the initial Nk bytes of 
the key K) and state is the state matrix (consisting of 4 rows 
and 32 bits in each row). Operations performed during the 
encryption include: 

• Assignment of the IN vector to the state matrix and the 
state matrix to the OUT vector. The input bytes vector 
is transformed into the array, according to (1): 

 

]4[],[ columnrowINcolumnrowstate ⋅+=    (1) 
 

The output bytes vector is obtained from the state 
according to (2): 
 

],[]4[ columnrowstatecolumnrowOUT =⋅+    (2) 
 

• AddRoundKey – the xor operation performed on every 
column of the state array, using the particular bytes of 
the expanded key (3): 

 

][][*,][*, columnNbiWcolumnstatecolumnstate +⋅⊕=   (3) 
 

• SubBytes – operation of exchanging the elements of 
the state matrix into the new values, using the structure 
called s-box. The latter is the array 16x16, containing 
the substitution values. The substitution is performed 
according to (4): 

 

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(  (4) 
 

where ci is the bit of the byte {01100011}. 
• ShiftRows – operation of rotating right the rows of the 

state array at i positions, where i=(0,1,2,3). This means 
that the first row is not changed, and the fourth row has 
the form: {a3,3 a3,0 a3,1 a3,2}.  

• MixColumns – in this operation every column of the 
state array is transformed using the equation (5): 

 



















⋅



















=



















column

column

column

column

column

column

column

column

state
state
state
state

state
state
state
state

,3

,2

,1

,0

,3

,2

,1

,0

02010103
03020101
01030201
01010302

      (5) 

2.2. AES decryption scheme 
The decryption algorithm is similar to the encryption, 

but contains the inverse array operations, which are also in 
different order than in the encryption scheme. It will be used 
by the data processing server do decrypt the incoming 
measurement data and by the DAQ nodes to decrypt the 
instructions from the control nodes or the server. The 
generic decryption procedure [1] is presented in Fig. 3.  

The additional operations are as follows: 
• InvShiftRows – operation of rotating left the rows of 

the state array at i positions, where i=(0,1,2,3). Again, 
the first row is not changed, and the fourth row has the 
form: {a3,1 a3,2 a3,3 a3,0}.  



• InvSubBytes – the inverse operation of exchanging the 
elements of the state matrix into the new values, using 
the inverted s-box. 

• InvMixColumns – in this operation every column of 
the state array is transformed using the equation (6): 
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AESinvcipher(IN(4⋅Nb), OUT(4⋅Nb), W[Nb⋅(Nr+1)]) 
begin 
 state[4,Nb] = IN 
 AddRoundKey(state, W[Nr⋅Nb, (Nr+1)⋅Nb-1]) 
 for i = Nr-1 to 1 
  InvShiftRows(state) 
  InvSubBytes(state) 
  AddRoundKey(state, W[i⋅Nb, (i+1)⋅Nb-1]) 
  InvMixColumns(state) 
 end 
 InvShiftRows(state) 
 InvSubBytes(state) 
 AddRoundKey(state, W[0, Nb-1]) 
 OUT = state 
end 

Fig. 3. Pseudocode of the AES decryption [1]. 

2.2. Expanded key generation scheme 
The last element of the AES scheme is the expansion of 

the key W. It takes the initial cipher key K and generates 
from it Nb⋅(Nr+1) bytes, further used in the algorithms 
presented in Fig. 2 and 3.  

 
AESkeyexpansion(K(4⋅Nk), W[Nb⋅(Nr+1)], Nk) 
begin 
 i = 0 
 while (i < Nk) 
  W[i] = [K[4⋅i] K[4⋅i+1] K[4⋅i+2] K[4⋅i+3]] 
  i = i + 1 
 end 
 
 i = Nk 
 while (i < Nb⋅(Nr+1)) 
  temp = W[i-1] 
  if (mod(i, Nk)==0) 
     temp = xor(SubWord(RotWord(temp)),Rcon[i/Nk]) 
  elseif (Nk > 6 & mod(i, Nk) == 4) 
   temp = SubWord(temp) 
  end 
  W[i] = xor(W[i-Nk], temp) 
  i = I + 1 
 end 
end 

Fig. 4.  Pseudocode of the key expansion [1]. 

The algorithm is performed before the encryption or 
decryption takes place. Its main operations are: 

• SubWord – the operation similar to SubBytes, as it 
transforms the input four bytes into the output bytes 
using the s-box. 

• RotWord – the operation of a cyclic permutation, 
changing the position of the bytes in the sequence, 
according to the following schema: {a0 a1 a2 a3} → {a1 
a2 a3 a0}. 

• Rcon – a constant word array, that has the following 
form: {xi-1 {00} {00} {00}}, where xi-1 is the power of 
{02} in the field GF(28) 

The detailed information about all the algorithms can be 
found in [1]. 

3.  THE AES ALGORITHM MODIFICATIONS 

The algorithms presented in section 2 can be used in any 
node of the distributed system. However, to take advantage 
of the multiprocessing units present in the nodes responsible 
for the data processing, their modifications must be 
proposed. According to the parallel computations paradigms 
[3], the independent parts of the algorithms must be 
identified and then prepared to work in separate threads. 
One of two approaches should be applied here. Both are 
based on the observation that the algorithms from section 2 
perform independent matrix row or column transformations, 
which can be performed concurrently. Section 3.1 presents 
the overall approach to the simultaneous block encryption 
and decryption assuming that multiple processor cores are 
available (so each core processes its own block). In section 
3.2 additional parallelism of the algorithms operations are 
presented. The efficiency of the latter solution is limited to 
the size of the matrices and works best with four cores. 

3.1. Concurrent block encryption and decryption 
The first modification of the original algorithm does not 

require any changes in the algorithm itself. The procedure 
involves dividing the input, plaintext bytes into blocks that 
can be encrypted and decrypted independently. This way 
multiple blocks can be processed simultaneously. The 
procedure is multiplied and every copy processes every i-th 
block, according to (6): 

 
)4,mod()( ijINfAES jj ==                     (6) 

 
where j = {1,…,n}, n is the number of the copies of the AES 
procedure (performing n simultaneous blocks processing) 
and i={1,…,m}, m is the number of the plain text blocks. 
The first operation here is separating the plain text or cipher 
blocks into independent streams and then applying the AES 
encryption or decryption procedures. 

The expected increase of the computational efficiency 
depends on the number of the applied copies of the 
procedure. Implementation of the modification in the 
programming language requires multi-threading mechanism. 
The example of the encryption using the multiple copies of 
the encrypting procedure is in Fig. 5. 



 

Fig. 5.  Exemplary encryption using concurrent AES procedures 
for n=3 and m=6. 

 This modification is especially useful in the data 
processing server, which obtains multiple data from many 
DAQ nodes. Also, large amount of data sent from one node 
(for example, long waveforms – of thousands of samples) 
must be divided into blocks. 

3.2. Modification inside the algorithm 
The modification presented in section 3.1 is simple and 

requires little toil from the designer of the measurement 
system. However, a more efficient approach may be the 
modification made inside the algorithm to make every 
subprocedure inside the AES schedule to be able to run on 
the independent processor cores. This might also be 
necessary when the plain text or cipher blocks are processed 
in relation to the values obtained in the previous iterations. 
To modify the original algorithm, the analysis of the scheme 
presented in Fig. 2, 3 and 4 was conducted. The general 
solution is presented on the exemplary encryption scheme. 
The decryption and key expansion algorithms are performed 
the same way. Note that the parallelism of the whole scheme 
requires firstly row, then column operations.  

 

 

Fig. 6.  Concurrent SubBytes and ShiftRows operations. 

Firstly, the steps of the algorithms that are in a sequence 
can not be modified to be run simultaneously, as their results 
depend on the results obtained from the preceding 
operations. Therefore, the steps inside the “for” loop 
(SubBytes, ShiftRows, MixColumns and AddRoundKey) 
must be processed sequentially, and no concurrent execution 

is possible. However, the analysis of the operations inside of 
these steps shows that the matrix operations can be broken 
into independent parts.  

The SubBytes and ShiftRows are the operations that 
transform the individual rows in the state array – each row 
can be processed separately. Moreover, as these operations 
are put one after another in the algorithm, there is no need to 
treat them as the separate subprocedures. They can be used 
inside one program function. The result of the optimization 
is presented in Fig. 6.  

 

 

Fig. 7.  Concurrent MixColumns and AddRoundKey operations. 

Similarly, MixColumns and AddRoundKey can be 
decomposed into the simultaneously processed parts, but 
this time the latter operate on columns. The solution is 
presented in Fig. 7.  

4.  IMPLEMENTATION OF THE ALGORITHM 

The proposed modifications were implemented in the 
exemplary measurement system, where the presented 
operations could be tested. It consisted of two nodes – DAQ 
and processing, which justifies application of the encryption 
and decryption schemes. The algorithm was implemented in 
the LabVIEW programming environment. To run the 
parallel tasks under the RT system, RT module was used. 
Because the cryptographic algorithms for LabVIEW are 
currently available thanks to the Crypto-G library [4], the 
AES implementation from the latter was exploited as the 
reference application. To ensure the parallel computations, 
the algorithm implementation was modified to run under the 
RT module. The abilities of the latter of running 
simultaneously computation-demanding tasks were verified 
during the previous research [5]. In the designed software 
the operations must be divided into separate threads (to 
reflect the concurrent data processing – see section 3). Two 
approaches to implement the latter were tried. The first one 
uses the timed sequences [6], i.e. programming structures 
allowing determination of the order of the particular 
functions execution and assign the processor cores to these 
tasks. In every subprocedure presented in section 3, the state 
array was decomposed into the independent parts, and then 
inserted into the timed sequence, assigned to the particular 
core. Finally, the independent rows or columns were put 
together, restoring the array. Note that using the timed 



structures (designed especially for the RT operating system 
(RTOS)) makes the AES procedure runnable only under the 
latter. The example of the algorithm implementation using 
the timed sequence is in Fig. 8. 

The second approach is based on the ability of the RTOS 
to automatically assign the particular tasks to the processor’s 
cores. This time the array operations are simply divided into 
the separate data streams, without any explicit core 
assignment. The example of the code without the timed 
structures is presented in Fig. 9. The main advantage of such 
implementation is the ability to run the functions both under 
the general purpose operating system (GPOS) and RTOS.  

 

 

Fig. 8.  Fragment of the MixColumns procedure using the timed 
sequence. 

 

Fig. 9.  Fragment of the MixColumns procedure without the timed 
structures. 

During tests both implementations were verified with 
respect to the correctness of the encryption and decryption, 
and the speed of computations. To obtain the latter the 
measurement mechanisms of the RT module were exploited, 
i.e. timestamp measurements with the microsecond 
accuracy. The first one is used to take the time of the 
encryption and decryption computations. The second is used 
to observe, how the processor’s cores are used to perform 
the measurement of application’s computations.  

To test the algorithm the following laboratory 
configuration was assembled (similar to [7]): 

• RT target – a computer run under the RTOS and 
executing the AES algorithm implemented in the 
LabVIEW environment. It is equipped with the Intel 
Core2Quad processor, 2 GB of RAM, 160 GB hard 
disk drive with FAT32 partition and the network card 
accepted by the system. 

• control node – a computer run under Windows  XP 
operating system, controlling the RT node. It is used to 
design the software part of the virtual instrument and 
deploy it on the RT node. It is equipped with the 
Athlon XP 2800+ processor, 2 GB of RAM and 

standard network card. The version of the LabVIEW 
environment used to design and implement the 
algorithm was 8.5 (the first one supporting the multi-
core programming techniques under the RTOS). 

• Networking infrastructure – used to ensure the 
communication between the control node and RT 
target. Both computers must be equipped with the 
network cards , which are also connected to the switch. 

The laboratory test stand is presented in Fig. 10. 
 

 

Fig. 10.  Laboratory test stand. 

5.  TESTS AND MEASUREMENTS 

All versions of the algorithm were verified using the 
standard test vectors, including 16-byte plain texts and 16-
24- and 32-byte long keys.  The tests included both 
encryption and decryption to compare the times of both 
operations. The example of the time analysis of processing 
one 16-byte word using all types of the keys is presented in 
Table 1. The algorithm version with the implicit core 
assignment - ICA (see Fig. 8) is the fastest one, the version 
with explicit core assignment (ECA) requires too much 
overhead for the timed structures to be effective against the 
single block. However, for larger data structures it may be 
much faster. The encryption and decryption operations have 
similar time of execution, because both consist of identical 
number of analogous matrix operations. 

Table 1.  Speed of different versions of the AES encryption and 
decryption for the single plain text block and different key lengths. 

Key length Basic ICA ECA 
AES-128 75,35 ms 45,78 ms 118,74 ms 
AES-192 96,74 ms 51,59 ms 150,36 ms 
AES-256 118,65 ms 57,35 ms 181,55 ms 

 
The reference algorithm from the Crypto-G library 

worked correctly under GPOS, but did not work under 
RTOS. On the other hand, the algorithm designed for the 
RTOS using the time sequences did not run well under the 
GPOS. The version of the algorithm designed without the 
RT programming elements worked under both OS. 

Another experiment consisted in the block encryption 
and decryption of the whole waveform gathered in the node 
(see section 3.1). This time the encryptions mode must be 
used. In the simplest case, ECB, each identical sample 
would be encrypted the same way, producing the same 



cipher, as each block is encrypted separately here. If 
periodical signals are measured, the ECB mode 
compromises the cipher without the knowledge of the keys. 
Therefore the more sophisticated mode, CBC is used. Here 
the cipher from the previous iteration is mixed with the next 
plaintext block (using the XOR operation) and then put to 
the encryption procedure. The sequence of blocks is the 
sequence of measured values of the waveform. Each sample 
has a double representation, i.e. requires 32 bits. AES works 
with input sequences of four 32-bit long words, therefore 
sequences of four words must be put as the input of the AES 
scheme. The method was tested on the RT target, which 
received waveforms of different length. For encryption all 
three key lengths were used. Before the data is processed, 
the conversion between the numerical values and their 
binary representation must be performed. The samples 
vector was also decomposed into subvectors, each of which 
was encrypted by the separate core. The reciprocal operation 
is required to be performed on the other side of the 
transmission line, when the data must be decrypted. Results 
of the encryption/decryption scheme for the exemplary 
1024-samples long waveform are in Table 2. 

Table 2.  Speed of different versions of the algorithm for the 1024 
samples waveform and different key lengths. 

Key length Basic ICA ECA 
AES-128 9,83 s 4,74 s 16,21 s 
AES-192 14,84 s 8,03 s 21,99 s 
AES-256 19,98 s 11,21 s 28,88 s 

 
The relation between the particular versions of the AES 

scheme is similar to the one from Table 1. Again, the 
implicit core assignment is the most effective. To 
successfully transmit all samples between the nodes in the 
distributed system, the overall time will be required: 

 

convdecnetencconvovr tttttt ++++=    (7) 
 

where tovr is the overall time of sending the data, tconv is the 
time of converting the numbers to the byte arrays (1024 total 
conversions) and dividing the samples vector into four 
concurrent vectors, tenc is the time of the whole vector 
encryption, tnet is the time required for successful network 
transmission, tdec is the decryption time of the whole 
samples vector. The largest amount of time is required for 
encryption and decryption. In the “Basic” implementation 
(where no multithreading for the matrix operations is 
involved), each operation lasts for about 50 ms. The optimal 
implementation requires about 30 ms. Note that the times of 
the overall waveform encryption are 64 times the single 
block encryption/decryption time, because the 1024 samples 
vector is decomposed into four 256-element subvectors. 
Each four subsequent elements of the particular subvector 
are the input of the AES scheme (to form 128-bit sequence).  

The influence of the waveform length on the encryption 
and decryption efficiency is presented in Fig. 11. The most 
efficient is the ICA version of the algorithm.  

 

 

Fig. 11.  Time of the AES scheme execution for different lengths 
of samples vectors. 

6.  CONCLUSIONS 

The implemented AES algorithm works well under the 
RTOS and can be used in both the measurement server, 
gathering the encrypted data from the nodes of the system, 
and DAQ node equipped with the multi-core processor 
(such as PXI-8110 [8]). The improved implementation of 
the algorithm may be useful in the future reliable 
measurement systems, where not only the efficiency and 
determinism will be important, but also safety of transmitted 
data. The time analysis of the presented algorithm shows 
that the RT version is more efficient than the straightforward 
version from the Crypto-G library. This implies that the 
similar approaches to implement additional cryptographic 
algorithms should be made in the future. The power of the 
hardware responsible for the algorithm realization strongly 
affects the efficiency of encryption/decryption scheme. 
Therefore the designer must assess computational 
requirements of his system and prepare the computers 
capable of fulfilling them. Also, the aim of the upcoming 
research may be the full cryptographic library suited for the 
RT systems. 
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