
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

MULTICORE IMPLEMENTATION OF THE AES ALGORITHM IN THE
MEASUREMENT SYSTEM

Piotr Bilski 1,2, Wiesław Winiecki 2

1 Warsaw University of Life Sciences, Faculty of Applied Informatics and Mathematics, Warsaw, Poland,

piotr_bilski@sggw.pl, pbilski@elka.pw.edu.pl
2 Warsaw University of Technology, Institute of Radioelectronics, Warsaw, Poland, W.Winiecki@ire.pw.edu.pl

Abstract − The paper presents the implementation of the

Advanced Encryption Algorithm (AES) in the measurement
system, where the virtual instruments equipped with the
multi-core processors are used. The encryption algorithm is
first presented, then its modification to take advantage over
the multi-core processor is described. Implementation of the
latter in the virtual instrument working under the Real-Time
(RT) mode is presented. Finally, test vectors are used to
verify the validity of the modified algorithm and comparison
between the traditional algorithm and the version using the
parallel computations is performed.

Keywords: virtual instrumentation, cryptography, Real-
Time systems

1. INTRODUCTION

The influence of the computer technologies on the
modern measurement systems is steadily increasing.
Multiple solutions not only allow connecting the traditional
devices to the computers, but require the computer network
or processors to perform calculations on the acquired data.
As the distributed measurement systems are a common
implementation, the problem becomes the security of the
data transferred between the nodes of the system. The
threats related to the traditional computer network are well
identified and complete software and hardware solutions
were implemented. Security of the distributed measurement
systems is still not clearly defined, but numerous incidents
indicate that in the near future all the data in such a system
will have to be secured from the unauthorized access. The
most popular method of the data security is the
implementation of the cryptographic algorithms. In the
measurement systems involving the software (for example,
virtual instruments - VI), implementation of the algorithm in
the application run by the processor is the correct approach.

The measurement system can be supplemented with the
encryption schemes in two ways, related to its structure.
Generally, there are two types of the nodes. The first one are
measurement nodes, where the data acquisition (DAQ)
operations are performed. They are usually sensory
networks or general purpose computers equipped with the
DAQ hardware, etc. The nature of the measurements
depends on the character of the analyzed phenomenon:
temperature, pressure, voltage, current and similar. When

the measured quantities are converted into the form
acceptable by the computer system, they must be sent to the
second element of the system, i.e. data processing server. It
is the central node of the system, responsible for storing the
gathered information and performing the data processing.
The scheme of the system is presented in Fig. 1.

Fig. 1. Architecture of the distributed computer measurement
system.

Introduction of the encryption schemes into the system is
asymmetric. When the DAQ nodes gather measured data,
they must be encrypted before sending to the server.
Unfortunately, a very limited computing power is available
here, such as single core processors of lower frequencies.
The cryptographic algorithms are usually computationally
expensive, and may be difficult to implement in the small
microcontrollers, such as Intel 8051. On the other side there
is the high performance computing machine working as a
server. Although it has greater processing abilities, its
responsibility is the simultaneous decryption of the
measurement data sent from multiple nodes and encryption
of the configuration data sent to them.

It is often important to acquire the data from the sensors
and process them within the predefined time limits. To
ensure such determinism, the RT system is needed. The
latter can easily be implemented on the server (personal
computer), and operate the measurement application
designed in on of the integrated programming environments,
such as National Instruments LabVIEW, or Agilent VEE.
One of the newest achievements in the measurement
systems is the ability to use the multi-core processors in the
RT mode. This gives the opportunity to increase the speed

of computations and overcome the problem of the RT data
processing.

The paper presents the implementation of the AES
algorithm in the RT measurement server. The former was
designed using the LabVIEW environment and run on the
four-core Intel processor. Organization of the paper is as
follows. In section 2 the AES algorithm is presented.
Section 3 contains discussion of the modification of the
original algorithm to take advantage of the multiple cores. In
section 4 implementation of the algorithm in LabVIEW
environment is described. Section 5 contains the verification
of the algorithm and measurements of its efficiency. In
section 6 there are conclusions and future prospects.

2. THE AES ALGORITHM DESCRIPTION

The AES algorithm is the most popular symmetric block
cipher, approved by the National Institute of Standards and
Technology in 2001 [1]. The purpose of the algorithm is to
replace the older and less reliable algorithms, such as Data
Encryption Standard (DES). The algorithm operates on the
128-bit (16-byte) data blocks (called plain text, in the
measurement system the latter can be represented by the
acquired samples, arrays etc.) and uses 128-, 192-, or 256-
bit key to obtain 128-bit cipher. Application of the algorithm
consists of encryption (transformation of the plain text into
the cipher) and decryption (the opposite transformation). In
both operations, the same key is used. The hardware and
software requirements are relatively small, making the AES
the most popular symmetric standard [2]. Therefore it can be
successfully used in the simple measurement nodes of the
distributed system, where sensors and DAQ hardware gather
the desired quantities, then create blocks, encrypt them and
send to the server. The implementation of the algorithm is
based on the substitution-permutation network.

2.1. AES encryption scheme
The pseudocode for the AES encryption is presented in

Fig. 1. It transforms the input data (IN – measurements) into
the cipher (OUT) using the expanded key W.

AEScipher(IN(4⋅Nb), OUT(4⋅Nb), W[Nb⋅(Nr+1)])
begin
 state[4,Nb] = IN
 AddRoundKey(state, W[0, Nb-1])
 for i = 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, W[i⋅Nb, (i+1)⋅Nb-1])
 end
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, W[Nr⋅Nb, (Nr+1)⋅Nb-1])
 OUT = state
end

Fig. 2. Pseudocode of the AES encryption [1].

where Nb is the number of the processed bytes (here four),
Nr is the number of the algorithm’s iterations (depending on
the length of the key, equal to 10, 12, or 14 respectively), IN
is the 128-bits long plain text, OUT is the output vector
(cipher, 128-bits long), W is the expanded key (the sequence
of Nb⋅(Nr+1) bytes generated from the initial Nk bytes of
the key K) and state is the state matrix (consisting of 4 rows
and 32 bits in each row). Operations performed during the
encryption include:

• Assignment of the IN vector to the state matrix and the
state matrix to the OUT vector. The input bytes vector
is transformed into the array, according to (1):

]4[],[columnrowINcolumnrowstate ⋅+= (1)

The output bytes vector is obtained from the state
according to (2):

],[]4[columnrowstatecolumnrowOUT =⋅+ (2)

• AddRoundKey – the xor operation performed on every
column of the state array, using the particular bytes of
the expanded key (3):

][][*,][*, columnNbiWcolumnstatecolumnstate +⋅⊕= (3)

• SubBytes – operation of exchanging the elements of
the state matrix into the new values, using the structure
called s-box. The latter is the array 16x16, containing
the substitution values. The substitution is performed
according to (4):

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4((4)

where ci is the bit of the byte {01100011}.
• ShiftRows – operation of rotating right the rows of the

state array at i positions, where i=(0,1,2,3). This means
that the first row is not changed, and the fourth row has
the form: {a3,3 a3,0 a3,1 a3,2}.

• MixColumns – in this operation every column of the
state array is transformed using the equation (5):



















⋅



















=



















column

column

column

column

column

column

column

column

state
state
state
state

state
state
state
state

,3

,2

,1

,0

,3

,2

,1

,0

02010103
03020101
01030201
01010302

 (5)

2.2. AES decryption scheme
The decryption algorithm is similar to the encryption,

but contains the inverse array operations, which are also in
different order than in the encryption scheme. It will be used
by the data processing server do decrypt the incoming
measurement data and by the DAQ nodes to decrypt the
instructions from the control nodes or the server. The
generic decryption procedure [1] is presented in Fig. 3.

The additional operations are as follows:
• InvShiftRows – operation of rotating left the rows of

the state array at i positions, where i=(0,1,2,3). Again,
the first row is not changed, and the fourth row has the
form: {a3,1 a3,2 a3,3 a3,0}.

• InvSubBytes – the inverse operation of exchanging the
elements of the state matrix into the new values, using
the inverted s-box.

• InvMixColumns – in this operation every column of
the state array is transformed using the equation (6):



















⋅



















=



















column

column

column

column

column

column

column

column

state
state
state
state

edb
bed
dbe

dbe

state
state
state
state

,3

,2

,1

,0

,3

,2

,1

,0

00900
00090
00009
09000

 (6)

AESinvcipher(IN(4⋅Nb), OUT(4⋅Nb), W[Nb⋅(Nr+1)])
begin
 state[4,Nb] = IN
 AddRoundKey(state, W[Nr⋅Nb, (Nr+1)⋅Nb-1])
 for i = Nr-1 to 1
 InvShiftRows(state)
 InvSubBytes(state)
 AddRoundKey(state, W[i⋅Nb, (i+1)⋅Nb-1])
 InvMixColumns(state)
 end
 InvShiftRows(state)
 InvSubBytes(state)
 AddRoundKey(state, W[0, Nb-1])
 OUT = state
end

Fig. 3. Pseudocode of the AES decryption [1].

2.2. Expanded key generation scheme
The last element of the AES scheme is the expansion of

the key W. It takes the initial cipher key K and generates
from it Nb⋅(Nr+1) bytes, further used in the algorithms
presented in Fig. 2 and 3.

AESkeyexpansion(K(4⋅Nk), W[Nb⋅(Nr+1)], Nk)
begin
 i = 0
 while (i < Nk)
 W[i] = [K[4⋅i] K[4⋅i+1] K[4⋅i+2] K[4⋅i+3]]
 i = i + 1
 end

 i = Nk
 while (i < Nb⋅(Nr+1))
 temp = W[i-1]
 if (mod(i, Nk)==0)
 temp = xor(SubWord(RotWord(temp)),Rcon[i/Nk])
 elseif (Nk > 6 & mod(i, Nk) == 4)
 temp = SubWord(temp)
 end
 W[i] = xor(W[i-Nk], temp)
 i = I + 1
 end
end

Fig. 4. Pseudocode of the key expansion [1].

The algorithm is performed before the encryption or
decryption takes place. Its main operations are:

• SubWord – the operation similar to SubBytes, as it
transforms the input four bytes into the output bytes
using the s-box.

• RotWord – the operation of a cyclic permutation,
changing the position of the bytes in the sequence,
according to the following schema: {a0 a1 a2 a3} → {a1
a2 a3 a0}.

• Rcon – a constant word array, that has the following
form: {xi-1 {00} {00} {00}}, where xi-1 is the power of
{02} in the field GF(28)

The detailed information about all the algorithms can be
found in [1].

3. THE AES ALGORITHM MODIFICATIONS

The algorithms presented in section 2 can be used in any
node of the distributed system. However, to take advantage
of the multiprocessing units present in the nodes responsible
for the data processing, their modifications must be
proposed. According to the parallel computations paradigms
[3], the independent parts of the algorithms must be
identified and then prepared to work in separate threads.
One of two approaches should be applied here. Both are
based on the observation that the algorithms from section 2
perform independent matrix row or column transformations,
which can be performed concurrently. Section 3.1 presents
the overall approach to the simultaneous block encryption
and decryption assuming that multiple processor cores are
available (so each core processes its own block). In section
3.2 additional parallelism of the algorithms operations are
presented. The efficiency of the latter solution is limited to
the size of the matrices and works best with four cores.

3.1. Concurrent block encryption and decryption
The first modification of the original algorithm does not

require any changes in the algorithm itself. The procedure
involves dividing the input, plaintext bytes into blocks that
can be encrypted and decrypted independently. This way
multiple blocks can be processed simultaneously. The
procedure is multiplied and every copy processes every i-th
block, according to (6):

)4,mod()(ijINfAES jj == (6)

where j = {1,…,n}, n is the number of the copies of the AES
procedure (performing n simultaneous blocks processing)
and i={1,…,m}, m is the number of the plain text blocks.
The first operation here is separating the plain text or cipher
blocks into independent streams and then applying the AES
encryption or decryption procedures.

The expected increase of the computational efficiency
depends on the number of the applied copies of the
procedure. Implementation of the modification in the
programming language requires multi-threading mechanism.
The example of the encryption using the multiple copies of
the encrypting procedure is in Fig. 5.

Fig. 5. Exemplary encryption using concurrent AES procedures
for n=3 and m=6.

 This modification is especially useful in the data
processing server, which obtains multiple data from many
DAQ nodes. Also, large amount of data sent from one node
(for example, long waveforms – of thousands of samples)
must be divided into blocks.

3.2. Modification inside the algorithm
The modification presented in section 3.1 is simple and

requires little toil from the designer of the measurement
system. However, a more efficient approach may be the
modification made inside the algorithm to make every
subprocedure inside the AES schedule to be able to run on
the independent processor cores. This might also be
necessary when the plain text or cipher blocks are processed
in relation to the values obtained in the previous iterations.
To modify the original algorithm, the analysis of the scheme
presented in Fig. 2, 3 and 4 was conducted. The general
solution is presented on the exemplary encryption scheme.
The decryption and key expansion algorithms are performed
the same way. Note that the parallelism of the whole scheme
requires firstly row, then column operations.

Fig. 6. Concurrent SubBytes and ShiftRows operations.

Firstly, the steps of the algorithms that are in a sequence
can not be modified to be run simultaneously, as their results
depend on the results obtained from the preceding
operations. Therefore, the steps inside the “for” loop
(SubBytes, ShiftRows, MixColumns and AddRoundKey)
must be processed sequentially, and no concurrent execution

is possible. However, the analysis of the operations inside of
these steps shows that the matrix operations can be broken
into independent parts.

The SubBytes and ShiftRows are the operations that
transform the individual rows in the state array – each row
can be processed separately. Moreover, as these operations
are put one after another in the algorithm, there is no need to
treat them as the separate subprocedures. They can be used
inside one program function. The result of the optimization
is presented in Fig. 6.

Fig. 7. Concurrent MixColumns and AddRoundKey operations.

Similarly, MixColumns and AddRoundKey can be
decomposed into the simultaneously processed parts, but
this time the latter operate on columns. The solution is
presented in Fig. 7.

4. IMPLEMENTATION OF THE ALGORITHM

The proposed modifications were implemented in the
exemplary measurement system, where the presented
operations could be tested. It consisted of two nodes – DAQ
and processing, which justifies application of the encryption
and decryption schemes. The algorithm was implemented in
the LabVIEW programming environment. To run the
parallel tasks under the RT system, RT module was used.
Because the cryptographic algorithms for LabVIEW are
currently available thanks to the Crypto-G library [4], the
AES implementation from the latter was exploited as the
reference application. To ensure the parallel computations,
the algorithm implementation was modified to run under the
RT module. The abilities of the latter of running
simultaneously computation-demanding tasks were verified
during the previous research [5]. In the designed software
the operations must be divided into separate threads (to
reflect the concurrent data processing – see section 3). Two
approaches to implement the latter were tried. The first one
uses the timed sequences [6], i.e. programming structures
allowing determination of the order of the particular
functions execution and assign the processor cores to these
tasks. In every subprocedure presented in section 3, the state
array was decomposed into the independent parts, and then
inserted into the timed sequence, assigned to the particular
core. Finally, the independent rows or columns were put
together, restoring the array. Note that using the timed

structures (designed especially for the RT operating system
(RTOS)) makes the AES procedure runnable only under the
latter. The example of the algorithm implementation using
the timed sequence is in Fig. 8.

The second approach is based on the ability of the RTOS
to automatically assign the particular tasks to the processor’s
cores. This time the array operations are simply divided into
the separate data streams, without any explicit core
assignment. The example of the code without the timed
structures is presented in Fig. 9. The main advantage of such
implementation is the ability to run the functions both under
the general purpose operating system (GPOS) and RTOS.

Fig. 8. Fragment of the MixColumns procedure using the timed
sequence.

Fig. 9. Fragment of the MixColumns procedure without the timed
structures.

During tests both implementations were verified with
respect to the correctness of the encryption and decryption,
and the speed of computations. To obtain the latter the
measurement mechanisms of the RT module were exploited,
i.e. timestamp measurements with the microsecond
accuracy. The first one is used to take the time of the
encryption and decryption computations. The second is used
to observe, how the processor’s cores are used to perform
the measurement of application’s computations.

To test the algorithm the following laboratory
configuration was assembled (similar to [7]):

• RT target – a computer run under the RTOS and
executing the AES algorithm implemented in the
LabVIEW environment. It is equipped with the Intel
Core2Quad processor, 2 GB of RAM, 160 GB hard
disk drive with FAT32 partition and the network card
accepted by the system.

• control node – a computer run under Windows XP
operating system, controlling the RT node. It is used to
design the software part of the virtual instrument and
deploy it on the RT node. It is equipped with the
Athlon XP 2800+ processor, 2 GB of RAM and

standard network card. The version of the LabVIEW
environment used to design and implement the
algorithm was 8.5 (the first one supporting the multi-
core programming techniques under the RTOS).

• Networking infrastructure – used to ensure the
communication between the control node and RT
target. Both computers must be equipped with the
network cards , which are also connected to the switch.

The laboratory test stand is presented in Fig. 10.

Fig. 10. Laboratory test stand.

5. TESTS AND MEASUREMENTS

All versions of the algorithm were verified using the
standard test vectors, including 16-byte plain texts and 16-
24- and 32-byte long keys. The tests included both
encryption and decryption to compare the times of both
operations. The example of the time analysis of processing
one 16-byte word using all types of the keys is presented in
Table 1. The algorithm version with the implicit core
assignment - ICA (see Fig. 8) is the fastest one, the version
with explicit core assignment (ECA) requires too much
overhead for the timed structures to be effective against the
single block. However, for larger data structures it may be
much faster. The encryption and decryption operations have
similar time of execution, because both consist of identical
number of analogous matrix operations.

Table 1. Speed of different versions of the AES encryption and
decryption for the single plain text block and different key lengths.

Key length Basic ICA ECA
AES-128 75,35 ms 45,78 ms 118,74 ms
AES-192 96,74 ms 51,59 ms 150,36 ms
AES-256 118,65 ms 57,35 ms 181,55 ms

The reference algorithm from the Crypto-G library

worked correctly under GPOS, but did not work under
RTOS. On the other hand, the algorithm designed for the
RTOS using the time sequences did not run well under the
GPOS. The version of the algorithm designed without the
RT programming elements worked under both OS.

Another experiment consisted in the block encryption
and decryption of the whole waveform gathered in the node
(see section 3.1). This time the encryptions mode must be
used. In the simplest case, ECB, each identical sample
would be encrypted the same way, producing the same

cipher, as each block is encrypted separately here. If
periodical signals are measured, the ECB mode
compromises the cipher without the knowledge of the keys.
Therefore the more sophisticated mode, CBC is used. Here
the cipher from the previous iteration is mixed with the next
plaintext block (using the XOR operation) and then put to
the encryption procedure. The sequence of blocks is the
sequence of measured values of the waveform. Each sample
has a double representation, i.e. requires 32 bits. AES works
with input sequences of four 32-bit long words, therefore
sequences of four words must be put as the input of the AES
scheme. The method was tested on the RT target, which
received waveforms of different length. For encryption all
three key lengths were used. Before the data is processed,
the conversion between the numerical values and their
binary representation must be performed. The samples
vector was also decomposed into subvectors, each of which
was encrypted by the separate core. The reciprocal operation
is required to be performed on the other side of the
transmission line, when the data must be decrypted. Results
of the encryption/decryption scheme for the exemplary
1024-samples long waveform are in Table 2.

Table 2. Speed of different versions of the algorithm for the 1024
samples waveform and different key lengths.

Key length Basic ICA ECA
AES-128 9,83 s 4,74 s 16,21 s
AES-192 14,84 s 8,03 s 21,99 s
AES-256 19,98 s 11,21 s 28,88 s

The relation between the particular versions of the AES

scheme is similar to the one from Table 1. Again, the
implicit core assignment is the most effective. To
successfully transmit all samples between the nodes in the
distributed system, the overall time will be required:

convdecnetencconvovr tttttt ++++= (7)

where tovr is the overall time of sending the data, tconv is the
time of converting the numbers to the byte arrays (1024 total
conversions) and dividing the samples vector into four
concurrent vectors, tenc is the time of the whole vector
encryption, tnet is the time required for successful network
transmission, tdec is the decryption time of the whole
samples vector. The largest amount of time is required for
encryption and decryption. In the “Basic” implementation
(where no multithreading for the matrix operations is
involved), each operation lasts for about 50 ms. The optimal
implementation requires about 30 ms. Note that the times of
the overall waveform encryption are 64 times the single
block encryption/decryption time, because the 1024 samples
vector is decomposed into four 256-element subvectors.
Each four subsequent elements of the particular subvector
are the input of the AES scheme (to form 128-bit sequence).

The influence of the waveform length on the encryption
and decryption efficiency is presented in Fig. 11. The most
efficient is the ICA version of the algorithm.

Fig. 11. Time of the AES scheme execution for different lengths
of samples vectors.

6. CONCLUSIONS

The implemented AES algorithm works well under the
RTOS and can be used in both the measurement server,
gathering the encrypted data from the nodes of the system,
and DAQ node equipped with the multi-core processor
(such as PXI-8110 [8]). The improved implementation of
the algorithm may be useful in the future reliable
measurement systems, where not only the efficiency and
determinism will be important, but also safety of transmitted
data. The time analysis of the presented algorithm shows
that the RT version is more efficient than the straightforward
version from the Crypto-G library. This implies that the
similar approaches to implement additional cryptographic
algorithms should be made in the future. The power of the
hardware responsible for the algorithm realization strongly
affects the efficiency of encryption/decryption scheme.
Therefore the designer must assess computational
requirements of his system and prepare the computers
capable of fulfilling them. Also, the aim of the upcoming
research may be the full cryptographic library suited for the
RT systems.

REFERENCES

[1] “Announcing the Advanced Encryption Standard (AES),”
Available: www.nist.gov

[2] T. Good, M. Benaissa, “AES on FPGA: from the fastest to the
smallest,” Proceedings CHES, Edinburgh, UK. Aug. 29 -Sept.
1, 2005, pp. 427-440.

[3] H. Kasahara, S. Narita, "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing," IEEE Trans.
Comput., Vol.c-33, No.11,pp. 1023-1029,Nov.1984.

[4] “Vartor Crypto-G library,” available at
http://www.vartortech.com/cryptog.html

[5] W. Winiecki and P. Bilski, "Multi-Core Programming
Approach in the Real-Time Virtual Instrumentation",
Proceedings IEEE I2MTC, Victoria, British Columbia,
Canada, 12-15 May, 2008, pp. 1031-1036.

[6] “Multicore Programming with LabVIEW Technical Resource
Guide,” available at:
ftp://ftp.ni.com/evaluation/labview/ekit/multicore_programmi
ng_resource_guide.pdf

[7] P. Bilski, W. Winiecki, ”Distributed Real-Time Measurement
System Using Time-Triggered Network Approach,”
International Journal of Computing, 2008, Vol. 7, pp. 22-29.

[8] “National Instruments Announces PXI-8110 3U Quad-Core
Embedded Controller for PXI System,” available at:
http://embeddedsystemnews.com

	PagNum410: 410
	ISBN410: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum411: 411
	PagNum412: 412
	PagNum413: 413
	PagNum414: 414
	PagNum415: 415

