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Abstract – In safety analysis as in engineering, the 

development of a satisfactory mathematical model is 
required to identify the parameters that need to be measured 
and calculated. The establishment of a proper calculus of 
safety begins with the recognition that the fundamental 
concept is life expectancy, and then, by extension, the 
increase in life expectancy that a safety measure brings 
about.  J-value analysis, which rests on this concept, is a 
method of estimating how much should be spent on a new 
safety system to improve health and/or safety, with the 
amount depending on both actuarial and economic data.  
Measurements made to quantify the first J-value trade-off 
between the average person's free-time fraction and his 
income result in an inferential estimate of the elasticity of 
marginal utility.  This is an important economic parameter 
in its own right, and moreover feeds into a second trade-off 
between life expectancy and income, which J-value analysis 
shows to be the balance that must be struck in evaluating a 
new safety scheme.   

Keywords J-value, calculus of safety, elasticity of 
marginal utility 

1.  A CALCULUS OF SAFETY 
 

In physics and engineering, a whole body of learning on the 
governing laws is available and indeed widely accepted, but 
this fortunate situation does not pertain to the same extent 
when it comes to socio-economy theory.  This was noted by 
Von Neumann and Morgenstern in 1944 [1], and, while 
undoubtedly there has been progress since then, the basic 
premise still holds true today.  But as in engineering, the 
development of a satisfactory mathematical model is the 
first priority, since it is only in this way that we can identify 
the parameters that need to be measured and calculated. 

In the case of safety analysis, it is necessary to start with 
a clarification of principles, since the topic is highly 
emotive, and confusion can be introduced, intentionally or 
unintentionally, by an appeal to plausible but imprecise and 
imperfectly representative concepts.  In particular, we need 
to clarify the concepts of "saving a life" and "preventing a 
fatality".  While superficially attractive and in frequent use, 
these concepts contain a fundamental flaw: both are 
impossibilities.  Since we are all going to die, no-one's life 
can be saved and no-one's death can be prevented.  We need 
to realise that the best we can do is to rescue someone from 

a position of hazard, and restore that person's life 
expectancy to what it was in the absence of the hazard. To 
be sure we could avoid the logical flaw by adding the 
qualifier "temporarily", but this is not done in normal 
practice even by scientists and certainly not by politicians 
and the media, who have, quite properly, a large influence 
over safety debates.  Largely people are unaware of the need 
to do so. But the logical flaw inherent in the two concepts 
means that they are unsuitable as foundations for a rigorous 
calculus of safety. 

Having established that we cannot save a life, it is 
clearly not sensible to ask how much should be spent to save 
a human life.  Moreover, "the value of a human life" is not 
an entirely obvious concept.  If a child of 10 is rescued from 
a threat to his life, that child will have about 69 years of life 
expectancy left, whereas if a person of, say 60, is rescued, 
that person will have about 22 years left.  Discounting will 
have a part to play, so that the worth to each person now of 
the later years gained will be worth relatively less because of 
the delay before they can be enjoyed.  But this will still 
leave the child having a greater number of expected life-
years restored to him.  So one can speak loosely of the 
child's life being worth more, but only on the understanding 
that what we really mean is that the life expectancy of the 
child when the threat is removed is greater than the 
unthreatened life expectancy of the 60 year old, and so the 
restoration of life expectancy for the child is more.  This is 
not an entirely new concept to the man in the street, and may 
be the basis for the cry in times of danger: "women and 
children first!" – it is the children's life expectancy that is 
the prize, with women perhaps being valued for their greater 
role in sustaining the child on the early parts of road to that 
life expectancy. 

This philosophical and ethical review prompts the 
important realisation that a safety system cannot prevent 
death, but it can postpone it, ideally by restoring life 
expectancy to what it was in the unthreatened state.  As 
realised in a pioneering work by Lord Marshall [2], the 
calculus of safety needs to be founded on the 
mathematically precise concept of life expectancy. 

This viewpoint transfers our focus onto life expectancy 
and its associated variables such as mortal hazard rate as the 
important parameters to be measured and/or calculated in 
order to make progress with safety analysis. 

The J-value method [3] (J for judgment) is developed 
from this standpoint, and is a fully objective technique for 
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estimating the maximum amount that should be spent on a 
new system to improve health and/or safety.  It depends on 
measurements of both actuarial and economic data to 
quantify two trade-offs.  The first trade-off is between the 
average person's free-time fraction and his income, while the 
second draws on the outcome of the first to establish a 
balance between income and life expectancy.  The first 
trade-off, carried out at a societal level, will be modelled in 
this paper, and the model will indicate which economic 
parameters need to be measured.  Ways of measuring those 
parameters will be discussed, and values provided for the 
UK.  A brief discussion will then be given of the way in 
which the data gathered can be used to value life extension 
in the context of a safety system. 

2.  LIFE-QUALITY INDEX AND INCOME, LIFE 
EXPECTANCY AND FREE-TIME FRACTION 

We follow [4] in postulating that the fundamental factors 
influencing the current quality of life for any given person 
are first how long he or she can expect to live from now on 
and secondly how much he or she will have available to 
spend, both on life's necessities and on its luxuries.  The first 
factor corresponds to life expectancy, X (years), and may be 
developed further by noting that, in considering their quality 
of life, people will generally wish to increase the time that 
they are free to dispose of as they think fit, at the expense of 
the time that they are obliged to spend working.  In fact, 
society as a whole and individuals within it will engage in a 
complex trade-off between free time and working time.  In 
this, the benefit from the extra income derived from working 
longer is weighed against the disbenefit resulting from the 
loss of free time.  Thus the average, expected, free time from 
now on, fXF = , in which f is the average free-time 
fraction from now on, is a better indicator of quality than 
pure life expectancy.  Accordingly, we may advance a life-
quality index, Q1, for the average person as a Cobb-Douglas 
utility function [5], with arguments earnings per year and 
expected free time from now on: 

γβα FGQ 11 =        (1) 

where  ,1 βα and γ  are positive constants and G is the 
average earnings of a person as measured by the GDP per 
head (£y-1).  This figure includes both wages and return on 
capital, and is chosen for ethical reasons: everyone is then 
treated equally as regards income.   
 By the theory of utility [1], [6], we may manipulate (1) 
into the form 

fXGQ q=2        (2) 
and still have an equivalent quality of life index, since the 
revised index is simply a scaled version of the former; in 
particular, it is still an increasing function of its three 
arguments, X, G and f: 
 Very low values of free-time fraction, hff ≤ , would 
undoubtedly have a detrimental effect on the population's 
health, and thus cause a reduction in life expectancy, X: 
"working to death".  As f increases past the harmful limit, 

hf , however, this effect will disappear, and it may be 

assumed that X and f will then be independent of each other.  
Thus there can be and will be no trade-off between X and f 
in the region where hff > . Two important, potential 
trade-offs remain, however.  The first is between income 
and free-time fraction, viz. between G and f, while the 
second is between income and spending on a health and 
safety scheme that will prolong life expectancy, viz. between 
G and X. 
 These two trade-offs may be considered separately 
because of the independence of X and f (in the absence of 
"working to death").  In fact, this mirrors what happens in 
practice in advanced countries.  Fixing the free-time 
fraction, f, involves a diffuse, population-wide bargaining 
process over working hours, retirement age, wages and 
pensions that involves Government, employers, trade unions 
and the judiciary.  By contrast, spending on health and 
safety schemes is considered normally on a case-by-case 
basis, although it may still involve a number of players in 
practice, including the employer, the safety regulator, 
Government agencies, people living nearby, pressure groups 
and the media. 

3.  TRADE-OFF BETWEEN FREE-TIME FRACTION 
AND INCOME 

Since in the free-time negotiation, we may regard X as a 
constant, without loss of generality, we may multiply both 
sides of (2) by the positive constant, X1 , to give a life-
quality index in terms of G and f : 

fGQ q
f =        (3) 

When (3) holds, it will be possible for the average person to 
give up some free time in return for an increase in income 
and retain the same value of fQ , indicating the same level 
of satisfaction.  In this case, the average person will have no 
preference as whether such a change occurs or not: he will 
be indifferent, hence the term, "indifference curve".  
Specifically, at any point, ( )Gf , , on the indifference curve 
it is possible to give up a quantum of free-time fraction, 

fΔ , in return for a compensating increase in income, GΔ .  

The ratio, fG ΔΔ  as 0→Δf  dfdG= is then the 
marginal rate of substitution (MRS) of free-time fraction in 
the place of income.  As (3) is convex to the origin, the well-
established economic finding will hold that a plentiful 
supply will mean a lower price, so that the modulus of 

dfdG (the per-unit price) will be lower when f is high. 
 Meanwhile, following [7], we may use a Cobb-Douglas 
function as a simple but realistic model for the country's 
production.  Then the Gross Domestic Product for the 
country, CG  (£y-1), will be given by: 

θθ
CCC LAKG −= 1       (4) 

where CK  is a country's capital (£), CL , is its labour flow 

(years per year and so dimensionless), θ  is a constant in the 
range 0.10 ≤≤θ , while A is a productivity constant, 
embodying notions such as the education-level of the 



workforce, general know-how and technical efficiency.  The 
flow of labour, CL , may be seen to be the number of people 

in the country, CN , multiplied by the work-time fraction, 

fw −=1 : ( )fNwNL CCC −=×= 11 . Substituting 
into (4) gives: 

( )θθθ fNAKG CCC −= − 11      (5) 

Noting that the GDP per person, G,  is CC NGG = and 
that K is the capital per person (£) allows: 

( )θθ fAKG −= − 11      (6) 
Equation (6) represents a downward-sloping line in the 
plane of (f, G), which may be regarded as defining the 
collectively determined constraint linking the average 
person's possible earnings to his free time.  A position on 
this line is selected by choosing an appropriate value of free-
time fraction, f, provided only that it is located away from 
the low values of f where people's health would be impaired; 
obviously this would be recommended on both ethical and 
practical grounds, but importantly for this analysis, the 
condition is needed to ensure the independence of f and X is 
not compromised. 
 We may assume that the complex bargain being struck 
by society will find the position that yields the average 
person the greatest satisfaction.  This will entail maximising 
the life quality index (3) subject to the constraint of (6).  The 
optimal situation will occur when the line of equation (6) 
meets the convex curve of (3) at a tangent.  This will occur 
when their derivatives, dGdf , are equal. 
 The total derivative of equation (3) is given by: 

dfGdGqfGdQ qq
f += −1     (7) 

Moreover, fQ  is constant on an indifference curve, 

implying that 0=fdQ , and so:  

q
G
f
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−=       (8) 

Meanwhile, differentiating equation (6) with respect to G 
gives: 
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Assuming tangency at ( 00 ,Gf ), we may equate (8) and (10) 
to give: 
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[The same result may be found by substituting (6) into 
equation (3), then finding the value of f  that maximises fQ  
by differentiating the expression with respect to f and setting 
the differential to zero.  This method is described in [7] and 
provides a check on the correctness of the outcome.] 
 Fig. 1 illustrates the situation for a set of parameters 
estimated for the UK in 2006, together with life-quality 
indices 10% above and below the actual.  Also marked on 
the figure is a region where overwork will lead to a health 
hazard, where life expectancy and expected free time are not 
independent.  The extent of this region does not need to be 
defined precisely: it is sufficient for our purposes that the 
negotiation over free-time fraction occurs outside it.  
Similarly, there will be a low-income region which will be 
infeasible, since the population would not be supported here.  
Again the upper level of this need not be defined precisely, 
since it is again sufficient that the negotiation over free-time 
fraction takes place outside this region. 
 Fig. 1 provides a mathematically precise yet intuitively 
meaningful representation of society's process of trading 
between free-time fraction and income.  Society as a whole 
tests various positions on the average-income line for utility, 
and by a process of trial and error finds the point that yields 
the greatest overall satisfaction. 

  
Fig. 1 Indifference curves and curve of average income 

4.  ECONOMIC MEASUREMENTS NEEDED 

The model derived above requires the following economic 
measurements: the share of wages in the GDP, θ , the 
country's GDP, CG  , the number of people in the country, 

CN , and the average work-time fraction, 0w  (from which 

0f  can be found).  0w  is a composite measurement, 
requiring measurements of the following averages: hours 
worked per week, hours spent travelling to and from work 
per year, career length, life expectancy for workers and 
employment rate. 

5.  INFERENTIAL MEASUREMENT OF THE 
ELASTICITY OF MARGINAL UTILITY 

The parameter, q, emerges as an inferred measurement, 
found from (12).  It is a particularly important parameter, 
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since the term in (3), qG ,  is a power utility, used in the 
form η−1G , where η  = constant,  by the UK Treasury [8] in 
deciding the advisability of publicly funded projects.  The 
elasticity of marginal utility, η , has wide significance in 
welfare economics and also in insurance, where ηε −=  is 
known as the relative risk aversion coefficient.  A number of 
ways of measuring this critical parameter have been 
explored, but the J-value approach offers a new and 
independent method. 

6.  FURTHER MEASUREMENTS NEEDED BY THE 
J-VALUE 

The J-value is the ratio of the actual spend on a safety 
system to maximum reasonable, so that J = 1 occurs when 
the actual spend matches the maximum sensible.  This 
corresponds to the locus in the dXG −  plane of the 
indifference curve given by 

0QXG d
q =         (13) 

where dX  is the average discounted life expectancy of the 

group potentially exposed to a hazard [3], and 0Q  is the life 
quality in the unthreatened state.  It may be plotted only 
after the GDP per head has been measured, the average 
discounted life expectancy calculated and the value of q 
estimated based on the analysis of Sections 2 and 3 and the 
measurements detailed in Section 4.  See Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Indifference curve, the locus of J = 1 (UK 2006 data) 
 
The determination of the J-value requires additional 
measurements of mortality hazard rates.  These allow the 
change in discounted life expectancy associated with a 
nuclear safety system to be calculated, for example [9]. 

7. MEASUREMENTS AVAILABLE 

We are strongly indebted to successive generations of 
economists and statisticians who have measured and 
documented economic parameters over many years in the 
UK and other countries.  Data may be sought from a range 
of sources, but particularly the Treasury [8], the Office for 
National Statistics, which subsumes the Government 

Actuary's Department [10], [11], [12], the Pension Service 
[13] and the Department for Transport [14].  The data are 
updated regularly (monthly, quarterly or annually), and data 
series are available from which appropriate averages may be 
drawn.  For example, the share of wages in the GDP, θ , is 
given over a 60-year period in Fig.3, demonstrating its 
approximately constant nature, as predicted by the Cobb-
Douglas equation (4).  The fraction of GDP paid as wages  
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Fig. 3 Share of Wages, θ, in UK GDP from 1948 to present 
 
rose during the 1960's and 1970's, reaching a peak in 1975, a 
time of great industrial unrest in the UK.  It returned to 
approximately 1950's levels in about 1980, thereafter 
settling at roughly a constant level.  The mean value for the 
whole data series (61 years in length) is 569.0=θ with a 
standard deviation of 0.028, but it has been decided to take 
the mean for the last 30 years as a better indicator for the 
future, namely  546.0=θ , which has a smaller standard 
deviation of 0.018. 

Meanwhile the other parameter needed for the 
determination of q (equation (12) is the average work-time 
fraction, 0w , which is itself a composite parameter, 
requiring a knowledge of the average retirement age 
(altering in the UK from 60 for women and 65 for men to a 
common figure of 68 by 2046), the probability of being in 
work, the probability of being of working age and the 
number of hours worked per week (including an allowance 
for travelling time).  A detailed statistical model is needed to 
calculate the work-time fraction as a function of age, w(a), 
and thence a single, average figure for the population, 0w .  
The work-time fraction as a function of age is given in Fig. 
4, and it can be shown that ( )00 ww ≈ , the fraction of his 
expected life from now on that a new born child may expect 
to devote to working.  Thus 091.00 ≈w .  Hence, from 
equation (12) we may estimate 18.0≈q . 
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Fig. 4. Work-time fraction to the end of life against age 
 
 The only further structural parameter for the J-value 
techniques is the appropriate value of the discount rate.  
Guidance is available from the Treasury and from Pearce 
and Ulph [15], which suggests that a range of 1 to 4 % p.a. 
are likely to be appropriate.  We have chosen a discount rate 
at the centre of this range, namely 2.5% p.a.  

8. NUCLEAR INDUSTRY EXAMPLE 

Concerns were raised over the discharge by British Nuclear 
Fuels Ltd (BNFL) of Tc-99 from its Sellafield complex into 
the Irish Sea, especially after the concentration in lobster 
exceeded limits recommended by the Food Standards 
Agency. Tc-99 is one of the constituents of the medium 
active concentrate (MAC) that is a by-product of Magnox 
fuel reprocessing and is a weak-gamma emitter. The 
Environment Agency review of Tc-99 disposal concluded 
that it would be desirable to reduce the discharge limit from 
90 TBq/y current in 2001 to 10 TBq/y in 2006.  The Agency 
set out options labelled A, B, C and D for consideration. 
Option C (the option chosen) was estimated to save each 
person in a critical group of 2663 members of the general 
public a dose of 30 μSv of radiation a year for 10 years. 
 
The calculation of the change in life expectancy as a result 
of eliminating a low-level nuclear radiation dose is complex, 
since a radiation-cancer induced will have a latency of not 
less than about 10 years, and thereafter the effects are 
stochastic over a period of about 30 years.  The method used 
by Lord Marshall et al. [2] to calculate the effects of a one-
off exposure following an accident had to be extended to 
cover a prolonged exposure, where the effects on those 
unborn at the beginning of the exposure need to be 
accounted for [9].   
 
Using the methods of [9], as well as further refinements 
added since then [16], [17], [18], an average gain in life 
expectancy of 3.20x10-4 years (approximately 3 hours) was 
calculated as the benefit of installing the protection system.  
Applying the J-value method with q = 0.18 to Option C, 
which has a cost in present day values of £12,600,000, a J-
value of 116 is produced at a discount rate of zero, and 184 
when an interest rate of 2.5% is assumed.  Since the 

maximum sensible expenditure yields a J-value of unity, it is 
clear that there was an overspend of about two orders of 
magnitude on the Technetium-99 Removal Plant. 

Such large overspends are not untypical of the nuclear 
industry, but they are not confined to that industry.  One 
outstanding example with a similarly huge J-value was the 
spending by successive UK Governments of about £7 bn to 
save perhaps half a dozen lives at most from BSE/vCJD.  
This and other cases are examined in [19].  Although the 
regulators' stated targets are usually reasonably close to J = 
1 (see Fig. 5), very often much more money is actually spent 
on safety schemes as a result of the lack, until very recently, 
of an objective comparative scale [20]. 

 

 
 

Fig. 5  Showing UK regulators' recommendations 
clustered around J = 1. 

[DoT = Department for Transport; NICE = National Institute for Clinical 
Excellence, NRPB = National Radiological Protection Board (now part of 
the Health Protection Agency), HSE = Health and Safety Executive.  DoT 
Rail was for  multiple fatalities; it has now been reduced to DoT Road.] 

 
While the Technetium example concerned a prolonged 

exposure, dealing with the output of a probabilistic risk 
assessment means, very often, evaluating cases where a 
nuclear safety measure reduces the frequency of a 
radioactive release rather than its magnitude.  It is possible 
to calculate the change in life expectancy in such a case also 
and hence the J-value [21]. 

9. CONCLUSIONS 

Making good safety decisions with an impact on human 
lives requires both an adequate prediction of the before and 
after effects and a method of weighting these.  Knowing 
what parameters are important requires a rigorous calculus 
of safety, and this needs to be founded on the 
mathematically precise concept of life expectancy.  Change 
in life expectancy is a much finer tool than death count.  
Only in this way can we gain a proper knowledge of what 
parameters should be measured and calculated.    

J-value safety analysis starts from this firm foundation, 
and achieves an objective judgment on safety system 
expenditure by producing a mathematical model.  The 
model is dependent on economic and actuarial data derived 
from  measurements as explained in this paper.   The 
method provides, for the first time, an objective scale by 
which to judge the efficacy of safety expenditure. 
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