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Abstract − the present paper will present problems 

connected with accuracy inspection of free-form surfaces, 
performed with coordinate measuring machines equipped 
with touch measurement probes. The most important among 
them are, apart from the number and distribution of 
measurement points on a surface, errors caused by the probe 
radius compensation and determining the coordinate system. 
A theoretical analysis as well as the results of tests on the 
influence of compensations errors and errors in fitting the 
data to a CAD model on the results of computation of the 
points on the milled free-form surface will be presented. 
Considering any of these factors separately makes it 
impossible to obtain the complete picture of their mutual 
dependence. It turns out that applying compensation, leading 
to errors in determining measurement points, influences the 
uncertainty of the position and orientation of the coordinate 
system determined by fitting the compensated data to the 
CAD model. 
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1.  INTRODUCTION 

Numerically controlled measurement machines (CMM) 
equipped with touch trigger or scanning probes with ball-
end styluses are widely used in inspecting the surface 
accuracy. Such measurements aim at determining the 
workpiece coordinates of the points taken by the centre of 
the ball moving from point to point along the surface of the 
workpiece in the machine coordinate system. The 
coordinates of their corresponding points on the workpiece 
surface are determined by the system software through 
taking into consideration the correction vector whose length 
equals this of the ball radius, and the direction is 
perpendicular to the surface while the orientation is towards 
this surface.  

Growing demands concerning product functionality, 
ergonomics, and aesthetics, force creating machine parts 
composed of 3D curvilinear surfaces. The accuracy 
inspection involves digitalising the measured object 
(coordinate measuring with the use of the scanning method) 
and later comparing the obtained measurement points to 
their corresponding points on a CAD design (model). At 

each measurement point, geometric deviations, or the 
distances of these points from their projections on the 
nominal surface, are determined [1]. Different sampling 
strategies (number and location of measurement points) 
provide different measurement results for the same surface. 
This is connected to the fact of measuring a finite number of 
discrete points on the measured surface described actually 
with an infinite number of points. Since geometric 
deviations are different at each point, measurement results 
depend on the number and location of these points [2]. The 
processing accuracy inspection results may be presented in 
the form of a three-dimensional plot or a deviation map. 

Software for numerically controlled machines makes it 
possible to generate a path along which the end moves on 
the surface on the basis of a CAD model. A typical solution 
is to measure some specified number of points with 
automatic probe radius compensation. Theoretically, the 
direction of the correction vector at each measurement point 
(in the case of measuring with trigger probes, also the 
direction of the probe approach to the surface) is normal to 
that of the model. Due to inevitable machining errors, the 
actual contact points are not identical to the nominal ones, 
and the directions of the correction vectors are not normal to 
the actual surface. This fact leads to obvious errors in 
determining measurement points on the surface of the 
measured workpiece [2,3]. The errors do not exclusively 
depend on the values of geometric deviations; the greater the 
measuring probe radius is, the greater the errors are. In order 
to avoid probe radius compensation errors, measurements 
without such compensation are performed. The coordinates 
of the indicated points (coordinates of the probe end centre) 
are compared to their corresponding points on the off-set 
theoretical surface which is shifted from the one of the 
model by the probe radius in the direction normal to the 
surface, towards the ball centre [3]. 

At the first stage of measurements, it is necessary to 
establish the relationship between the coordinate system of 
the model superimposed on the workpiece and that of the 
machine. To achieve this, the workpiece coordinate system 
is defined in the manual mode, and later the coordinate 
systems of the model and the workpiece are superimposed 
virtually. The relationship between these coordinate systems 
is described by the transformation (rotation and translation) 
matrix. This common procedure makes it possible for the 
CMM software to generate theoretical measurement points 



on the workpiece (through the virtual model). Next, to 
obtain a more accurate mutual location of the workpiece and 
the model, after performing automatic scanning of a 
specified number of points (usually a few dozen points 
because of time limits), the obtained data should be fitted to 
the model. The least square method provides an optimal 
solution [4]. The fitting accuracy increases with the number 
of measurement points. The existence of different geometric 
deviations at each surface point results in a fitting 
uncertainty dependent on the number and location of 
measurement points, and thus uncertainty of the relationship 
between the workpiece coordinate system (and, obviously, 
each point indicated in this system) and the coordinate 
system [5-8]. The uncertainty area is limited with a 
hyperellipsoid whose dimensions depend on the 
transformation parameters scatter and the adopted 
confidence level [6,9].  

It is not possible to avoid errors in determining 
geometric deviations, even if measurements without 
compensation are taken, since fitting uncertainty is 
transferred to the uncertainty of the correction vector 
direction. 

All the factors listed above influence the measurement 
results at each point at the same time. The influence of the 
direction error of the correction vector can be minimised 
without applying any probe radius compensation as it turns 
out that compensation leads, above all, to increasing the 
received data scatter and then the uncertainty of determining 
the coordinate system on the basis of fitting a few dozen 
points to the CAD model (which also means the uncertainty 
of determining the measurement points) exceeds the value 
of the probe radius compensation errors. 

This paper presents a theoretical analysis as well as the 
results of tests on the influence of compensation errors and 
errors in fitting the data to a CAD model (at the same 
sampling strategy) on the results of the accuracy inspection 
of machining a free-form surface with the milling method. 
The influence of applying compensation to determining the 
coordinate system will also be described. 

The experiments were carried out with the use of a 
MISTRAL STANDARD 070705 coordinate measuring 
machine equipped with a Renishaw TP200 touch trigger 
probe with a stylus of 20mm in length, with a ball tip of 
2mm in diameter, MPEE=2.5+L/250 (PC DMIS software). 

2. MAJOR SAMPLING PROBLEMS 

2.1. Contact error 
In CAD-based measurements, the direction in which the 

probe approaches the surface (the correction vector), 
determined by software, is normal to the model. Geometric 
deviations are the reason why this direction is not 
perpendicular to the surface. As the result of converting the 
indicated measured point, a corrected measured point, not a 
point on the actual surface, is obtained. Sampling errors 
occur, which is illustrated in Fig.1.  

Not applying the radius compensation means minimising 
the contact error (Fig. 2). In this case, the indicated 
measured points shall be compared to the points obtained 
from off-setting the corresponding points from the CAD 

model by the value of the probe radius. However, this does 
not mean that the exact points are known. The unavoidable 
influence of the uncertainty of fitting data to the model, 
resulting from the surface geometric deviations, still 
remains. 
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Fig. 1.  Contact error: m – CAD model, s – actual surface,  
a – indicated measured point, b – corrected measured point,  

c – target contact point, d – actual contact point,  

T  - tip correction vector, δx – error component in X direction,  
δy – error component in Y direction. 

2.2. Fitting uncertainty 
If surface geometric deviations ε are random in character  

and have normal probability distribution, for a big enough 
number of measurement points assumed as the 
transformation base, it can be assumed that the 
transformation parameters are random variables of normal 
probability distribution. In a border situation, for an infinite 
number of measurement points, the expected values of 
transformation parameters describing the location of the 
coordinate system of the specific measured surface will be 
obtained. Consequently, the probability distributions of 
transformation parameters deviations from the expected 
values are also normal. 

For the case of analysing the joint probability 
distribution f(∆t) of the vector of transformation parameters 
deviations centred around the expected values (µ = 0), 
dependence can be illustrated as follows:  
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]       (1)                   

where: 
λ  – 6 x 6 covariance matrix,  
∆t = [dx,dy,dz,ax,ay,az] – the vector of transformation 

parameters deviations from their expected values. 
Variability of the parameters deviations vector is 

connected with equal probability (probability concentration) 
surfaces described by the equation (2)[9]:  

                                  ( ) ( ) 21 ηλ =∆∆ − tt T                              (2)                  

where: 
η – the constant dependent on the assumed probability. 



These surfaces have the shapes of hyperellipsoids whose 
centres are determined by the expected values vector [6,9]. 
The directions of the hyperellipsoids axes determine eigen 
(unit) vectors of the covariance matrix, and the squared 
lengths of the semi-axes – the corresponding eigen values of 
the covariance matrix. 

 The eigen vectors and values of a covariance matrix 
might be obtained by decomposing this matrix (3) (matrix 
properties allow for this) [9]. 

                                                                          (3) TUUΛ=λ

where: 
U – matrix whose columns are the covariance matrix 

eigen vectors 
Λ – diagonal matrix of the covariance matrix eigen 

values. 
The hyperellipsoid size is dependent on the assumed 

probability, and the constant η  value is determined from the 
chi-square distribution, in this case for six degrees of 
freedom [6,9].  

3.  EXPERIMENTAL RESEARCH 

3.1. Measured surface characteristics 
The experiments were performed on a free-form surface 

obtained in a three-stage milling process. In the last stage 
(profiling), the following parameters were applied: a ball-
end mill of 6 mm in diameter, rotational speed equal to 7500 
rev/min, working feed 300 mm/min and zig-zag cutting path 
in the XY plane (Fig. 2). 

 

Fig. 2. CAD model of the surface  

 

Fig. 3. Measurement points distribution on the CAD model (CMM 
software) 

1. The surface was scanned (applying radius 
compensation) with the UV method, 2500 (50 rows and 50 
columns) uniformly distributed measurement points were 

scanned on the surface (Fig. 3), and the process of fitting the 
data to the nominal surface was then carried out in which the 
least square method was applied and all the measurement 
points were used. The measurement process was repeated.  

2. The described process was subsequently repeated 
without applying radius compensation (an option in PC 
DMIS software). 

The surface was characterised by geometric deviations ε 
whose 3D graph is illustrated in Fig. 4, probability 
distribution in Fig. 5. It can be assumed that the deviations 
values were of a quasi-normal (random) character.  
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Fig. 4. Geometric deviations 3D graph (scanning without applying 
radius compensation) 
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Fig. 5. Geometric deviations probability distribution (without 
applying radius compensation) 

3.2. Impact of radius compensation on accuracy 
inspection results 

The obtained data is presented graphically. The plot of ε 
values for measurements applying radius compensation is 
illustrated in Fig. 6, without applying radius compensation 
in Fig. 7.  Table 1 shows the statistical parameters of the ε  
sample. 

An analysis of the obtained graphs shows that applying 
correction caused systematic errors whose values were 
dependent on the surface direction gradient and curvature 
radius. The arithmetic mean of the determined surface 
deviation was greater by 0.004 mm, and the scatter 
increased more than threefold.  
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Fig. 6. Plot of geometric deviations; scanning with radius 
compensation 
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Fig. 7. Plot of geometric deviations ε; scanning without applying 
radius compensation. 

Table 1. Statistical parameters of ε  population (in mm) 

 without radius compensation with radius compensation 

 geom. 
dev. ε 

compo
nent x 

compo
nent y 

compo
nent z 

geom. 
dev. ε 

compo
nent x 

compo
nent y

compo
nent z

mean -0.0137 -0.0006 -0.0001 -0.0141 -0.0178 0.0000 0.0000 0.0000
std. 
dev. 0.0047 0.0092 0.0055 0.0057 0.0181 0.0376 0.0247 0.0226

min. -0.0263 -0.0316 -0.0167 -0.0108 -0.0642 -0.0919 -0.0585 -0.0893

max 0.0034 0.0299 0.0227 0.0330 0.0320 0.0526 0.0612 0.0420

with compensation
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Fig. 8. Map of geometric deviations; scanning with applying radius 
compensation 

without compensation
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Fig. 9. Map of geometric deviations; scanning without applying 
radius compensation 

In order to illustrate the differences in measurements 
results more precisely, maps of these differences in relation 
to the XOY plane were prepared. The maps are presented in 
Fig. 8 and Fig. 9. Analysing these maps, it can be seen that  
compensation errors have actually determined (regular) 
distribution on the surface, connected to the surface shape, 
while the distribution of the geometric deviations 
determined in measurements without compensation has a 
different character. A comparison of the graphs suggests that 
the contact errors resulting from geometric deviations are 
not the only source of the correction errors. 

3.3. Determining fitting uncertainty 
In the next stage, groups of 50 measurement points were 

randomly selected out of the scanned with radius 
compensation 2500 points fifty times in order to perform the 
fitting. 50 sets of transformation parameters deviations from 
their expected values, or the values obtained in the process 
of fitting on the basis of all the scanned points, were 
obtained. The described process was subsequently repeated 
for data obtained from measurement without applying radius 
compensation. The normalities of the transformation 
parameters deviations (dx,dy,dz,ax,ay,az) probability 
distributions were checked graphically (example in Fig. 10). 

Assuming the P=0.95 ( ) probability 
for the upper limit of the possible scatter range of the 
coordinate transformation and P=0.05 (

( ) 5912622
95.0 .== χη

( ) 63.1622
05.0 == χη ) 

for the lower limit from the (2) dependence, the equal 
probability hyperellipsoids limiting the (uncertainty) space 
were established. The computations and graphical 
illustrations (Fig. 11, Fig. 12) of the results were performed 
in the Matlab software. The asterisks represent the 
transformation vector deviations scatter. It can be observed 
that the deviations of the transformation vector from their 
expected value, obtained in the experiments, are in the space 
within the uncertainty contours. 
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Fig. 10. Probability distributions of transformation parameters 
deviations from the expected values (without radius compensation) 

 

Fig. 11.  Uncertainty contours and their projections on the 
coordinate system main planes, with applying radius compensation 

Comparing the contours of the uncertainty of 
determining the coordinate system through fitting the  
measurement data to the CAD model in measurements with 
and without the radius compensation, it can be observed 
that, as in the case of the scatter of the determined surface 
geometric deviations, the uncertainty proportions are 3-4 
times bigger for the measurements in which compensation 
was applied.  

 

Fig. 12.  Uncertainty contours and their projections on the 
coordinate system main planes, without compensation 

4.  CONCLUSIONS 

This paper concerns the accuracy inspection of 
producing free surfaces, performed with the use of 
coordinate measuring machines equipped with touch trigger 
probes and software capable of programming the measuring 
track on the basis of CAD models. The authors concentrated 
on the major problems connected with measurement 
accuracy, i.e. the probe radius compensation error and the 
uncertainty of fitting data to the CAD model. The idea and 
results of research on the influence of probe radius 
compensation on accuracy inspection results were presented. 
In the paper, the authors describe and apply the method of 
determining the uncertainty area characteristic to 
measurement data, taking into account the correction vector 
(corrected scan points) and also characteristic to data 
consisting of indicated measured points. The tests were 
performed on a milled surface. In the described case, the 
mean value of geometric deviations obtained in 
measurements performed without applying radius 
compensation was smaller by 0.004 mm when compared to 
the value in measurements with compensation, and the 
uncertainty resulting from fitting the data to the CAD model 
approx. four times smaller for one of the transformation 
directions, respectively. 

ACKNOWLEDGMENTS 

The work is supported by the Polish Ministry of Science 
and Higher Education under the research project No. N 
N503 326235. 

 
 
 
 



REFERENCES 

[1] A. Werner and M. Poniatowska, “Determining errors in 
complex surfaces machining with the use of CNC machine 
tools”, Archives  of  Mechanical  Technology  and   
Automation, vol. 26, no 2, pp. 211-217, 2006. 

[2] G. Rajamohan, M.S. Shunmugam and G.L. Samuel, 
“Sampling strategies for verification of freeform profiles 
using coordinate measuring machines”, 9th International 
Symposium on Measurement and Quality Control, pp. 135-
140, Madras, India, Nov. 2007. 

[3] I. Ainsworth, M. Ristic and D. Brujic, “CAD-based 
Measurement Path Planning for Free-Form Shapes Using 
Contact probes”, The International Journal of Advanced 
Manufacturing Technology, vol. 16, pp. 23-31, 2000. 

[4] H.T. Yau and C.H.  Menq, “A unified least-squares approach 
to the evaluation of geometric errors using discrete 
measurement data”, International Journal of Machine Tools 
and Manufacture, vol. 43, pp. 1269-1290, 1996. 

[5] H.T. Yau, “Uncertainty analysis in geometric best fit”, 
International Journal of Machine Tools and Manufacture 
vol. 38, pp. 1323-1342, 1998. 

[6] Z. Yan and C. Menq, “Uncertainty analysis and variation 
reduction of three-dimensional coordinate metrology. Part 2: 
uncertainty analysis”, International Journal of Machine 
Tools and Manufacture, vol. 39, pp. 1219-1238, 1999. 

[7] P. B. Dhanish and J. Mathew, “Effects of CMM point 
coordinate uncertainty on uncertainties in determination of 
circular features”, Measurement, vol. 39, pp. 522-531, 2006. 

[8] C.H.J. Feng, A.L. Saal, J.G. Salsbury, A.R. Ness and G.C.S. 
Lin, “Design and analysis of experiments in CMM 
measurement uncertainty study”, Precision Engineering, vol. 
31, pp. 94-101, 2007. 

[9] Z. Kotulski and W Szczepiński, Error Analysis with 
Applications in Engineering, Rachunek błędów dla 
inżynierów, WNT, Warsaw 2004. 

 
           

 
 

 


	PagNum1821: 1821
	ISBN1821: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum1822: 1822
	PagNum1823: 1823
	PagNum1824: 1824
	PagNum1825: 1825
	PagNum1826: 1826


