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Abstract − The bird-cage method used for measuring 

cylindricity is reported to be the most effective, as it pro-
vides the most detailed information about an analyzed ob-
ject. The average values of profiles measured with the cross-
section and the generatrix methods may differ slightly, yet 
this may result from some design imperfections of the 
measurement instruments used. In this study, the problem of 
optimal profile matching is formulated and solved. As a 
result, the differences between the values of the registered 
profiles at the points of intersection of the scanning trajecto-
ries can be minimized.  

Keywords: cylindricity, bird-cage method, profile 
matching 

1.  INTRODUCTION 

Rotary components constitute a large and important 
group of machine parts. They are common, for instance, in 
the automotive, power, paper and shipbuilding industries; 
therefore, one of the most significant metrological tasks 
today is to ensure maximum accuracy of roundness and 
cylindricity measurements [1-7]. 

Cylindrically shaped objects have generally been as-
sessed by measuring their roundness deviations at several 
cross-sections. In practice, the reliability of a product is 
dependent on the whole area of the surface. It is desirable 
that cylindrical components be evaluated by means of the 
parameters that refer to the whole surface area. 

Cylindricity needs to be measured in such a way that the 
representation of the measured surface is as precise as possi-
ble. It is important to ensure appropriate density of measuring 
points. The basic criterion for selecting a measurement 
method is to assume the predominant harmonic for both 
roundness and straightness profiles. In practice, it is difficult 
to cover the entire surface with measuring points using the 
theoretical minimum density of points defined in the ISO 
12180 standard [8]. The standard describes the measurement 
methods that provide specific rather than general information 
about cylindrically shaped objects. These are: the cross-
section method, the generatrix method, the bird-cage method 
being a combination of the previous two, and the point 
method. The first three methods are graphically illustrated in 
Fig. 1.  

The cross-section and the generatrix methods are imple-
mented in the majority of instruments applying the radial 

method. The point method is frequently employed when 
form deviations are assessed by means of coordinate meas-
uring machines. The ISO 12180 standard recommends using 
the bird-cage method. Surprisingly, it is not commonly used 
to measure cylindricity deviations even though it provides 
the most detailed information about measured objects [9,10]. 

It appears that the average values of profiles measured 
with the cross-section and the generatrix methods differ 
slightly. This may be due to certain design imperfections of 
the measurement instruments used. In this study, the prob-
lem of optimal profile matching is formulated and solved. 
As a consequence, the differences between the values of the 
registered profiles at the points of intersection of the scan-
ning trajectories can be minimized.  
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Fig.1. Cylindricity measurement methods recommended in the ISO 
12180 standard [8]: a) the cross-section method, b) the generatrix 

method, c) the bird-cage method 

2.  METHODOLOGY 

Let us consider an XYZ Cartesian coordinate system 
representing the measurement table where the Z-axis coin-
cides with the spindle rotation axis. It is also convenient to 
apply a cylindrical coordinate system because the radial 
method of measurement of the macrogeometry of cylindrical 
surfaces involves scanning the object surface during the 
spindle rotation and the vertical shift of the sensor. The 
coordinates of a point in the cylindrical system associated 
with the XYZ system are represented by three numbers 

),,( zrϕ , where ϕ  is the angular coordinate of the point, r  

is the radial coordinate (distance of the point from the Z-
axis), and z  is the height-related coordinate. A cylindricity 



profile can be written parametrically using the following 
function: 

 ),(cyl zr ϕ  (1) 

where 

 π≤ϕ≤ 20  and Hz ≤≤0 . (2) 

The bird-cage method applied to measure the cylindric-
ity of rotary objects combines the principles of the cross-
section and the generatrix methods. It is assumed that the 
instrument is equipped with high precision systems for 
measuring the sensor height and the angle of table or spindle 
rotation.  

When a profile is to be measured at a selected cross-
section, the vertical shift of the sensor is switched off. The 
sensor needs to be shifted to a desired height and the table or 
spindle rotation switched on. The moment the control sys-
tem receives a signal of the zero angular position, the meas-
urement starts. It is assumed that the height coordinates of 
the consecutive cross-sections are: Nnzn ,...,2,1, = , where 

N  denotes the number of cross-sections. Then, without loss 
of generality, we assume that the height coordinates of the 
consecutive sections are arranged in ascending order and  

 Hzzz N =<<<= ...0 21 .  (3) 

The values of the profile observed in the subsequent cross-

sections are denoted by )(ϕc
nr . Obviously, measurements 

performed with the radial method are relative in character, 
thus 

 ),()( cyl n
c

n zrr ϕ+ρ≅ϕ , Nn ,...,2,1=  (4) 

for an unknown value of ρ . The approximation symbol ≅  

shows that the measurements of the profile radius contain 
errors resulting from the measurement noise and the instru-
ment design imperfections. If the coordinates nz  of the 

cross-sections are uniformly distributed over the range 
],0[ H , then 

 Nn
N

nH
zn ,...,2,1,

1

)1( =
−

−⋅= . (5) 

Profile measurements at longitudinal sections are performed 
with the table (spindle) at standstill. A measurement com-
mences after the table is turned to a desired angular position 
and the vertical sensor shift is switched on. The sensor posi-
tion can be stabilized by applying an additional run-up sec-
tion several millimeters in length. It is essential that the 
height of the sensor after switching on the shift be smaller 
than the initial height of the analyzed cylindricity profile. 
Assume that the angular coordinates of the longitudinal 
sections are: Mmm ,...,2,1, =ϕ , where M  denotes the 

number of  sections. 

The values of the profile at the consecutive longitudinal 
sections are denoted by: 

 ),()( cyl zrzr mm ϕ+ρ≅l , Mm ,...,2,1= . (6) 

Additionally, if we assume that the angular coordinates mϕ  

of the longitudinal sections are uniformly distributed in the 

range ]2,0[ π , then Mm
M

m
m ,...,2,1,

)1(2 =−π=ϕ . (7) 

The points of intersection of the scanning trajectories 
will play an important role in this study. The coordinates are 

),,( nm zϕ  ,,...,1 Mm = ,,...,1 Nn =  while the values of the 

profile radius are: 

 )(~
m

c
n

c
nm rr ϕ=  and  )(~

n
l
m

l
nm zrr = , (8) 

respectively. 

3. THE PROBLEM OF OPTIMAL PROFILE 
MATCHING 

After a cylindricity measurement conducted by means of 
the bird-cage method, one can observe that the values of the 
profile radius at the points of intersection of scanning trajec-
tories at the cross and longitudinal sections are slightly dif-
ferent. The difference may be due to the occurrence of 
measurement noise and instrument vibrations or the design 
imperfections of the sensor system. Note that the measure-
ment conditions for the cross-section method are different 
from those for the generatrix method. This causes different 
distribution of forces acting on the sensor tip. As a result, 
the profile observed with the cross-section method can be 
slightly shifted in relation to the profile observed with the 
generatrix method.  

3.1. Comparing the measurement results obtained by 
the cross-section and the generatrix methods 

A profile shift can be best observed in a spatial diagram 
of measuring points in a cylindrical coordinate system 

),,( rzϕ . Figure 2 illustrates the results of a series of cylin-

dricity measurements performed on a radial cylindricity 
measurement instrument. The points obtained by means of 
the cross-section and the generatrix methods are highlighted 
in blue and green, respectively. The first five measurements 
were conducted for rollers with a diameter of 52mm and a 
height of 100mm, each. The surface preparation involved 
polishing (the first three specimens) or grounding (the fourth 
and fifth specimens). There is a clear difference in the wavi-
ness level. The rollers were produced for the purposes of the 
research project No 4 T07D 021 27 financed by the National 
Committee for Scientific Research. The last three measure-
ments were carried out for rollers with a diameter of 38mm 
and a height of 62mm, each. Such rollers are used in bear-
ings produced by FŁT Kraśnik S.A. 

As can be seen, there is a clear positive shift of straight-
ness profiles in relation to roundness ones. The shift was 
calculated basing on the radius of the mean cylinder. The 
calculations were performed separately for the cross-section 
method and the generatrix method. The values are presented 
in Table 1. As can be seen, the differences in the mean pro-
file radius range from 0.2 to more than 1.0 µm. 
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Fig.2. Examples of spatial diagrams of the measuring points in the 
cylindrical coordinate system 

Table 1. Average values of the profiles obtained by means of the 
cross-section and the generatrix methods - comparison of cross and 

longitudinal sections 

Sample c
oR  [µm] 

Cross sections 

l

oR  [µm] 

Longitudinal 
sections 

Difference 
l

o
c
o RR −  

a 1.55 2.08 -0.52 
b -34.71 -33.32 -1.38 
c -0.16 0.27 -0.44 
d 1.74 2.04 -0.30 
e -10.78 -10.46 -0.32 
f -7.21 -6.91 -0.30 
g 0.66 0.90 -0.23 
h 15.44 15.86 -0.41 

3.2. Formulation and solution of the problem of opti-
mal profile matching  

Let us first consider an ideal device with error-free rep-
resentation of the measured profile ),(cyl zr ϕ . If cylindricity 

is measured with an ideal instrument using the bird-cage 
method, we obtain the following set of values of the profile 
radius: 

  ),()( cyl n
c
n zrr ϕ+ρ=ϕ , Nn ,...,2,1= , (9) 

 ),()( cyl zrzr mm ϕ+ρ=l , Mm ,...,2,1= , (10) 

for an unknown value of ρ . In this case, at the points of 

intersection of profile scanning trajectories, the condition 

)()( nmm
c
n zrr l=ϕ  is fulfilled. Using the notation of Eq. (8), 

we have 

 l

mn
c
mn rr ~~ = . (11) 

Due to measurement errors, the condition is fulfilled 
only approximately. Assume, at the first step, that due to the 
different distribution of forces acting on the sensor tip dur-
ing roundness and straightness measurements, the difference 

between the observed radii l

mn
c
mn rr ~~ −  at points ),( nm zϕ  is 

constant. Let us consider, however, a more general case. 
Assume that the difference between the actual and the ob-
served profiles is different for each cross-section. Thus, 

 ),(cyl nm
c
n

c
nm zrr ϕ+ρ≅ , MmNn ,...,2,1,,...,2,1 == , (12) 

 ),(cyl nmmnm zrr ϕ+ρ≅ ll , MmNn ,...,2,1,,...,2,1 == . (13) 

for unknown values of c
mρ  and l

nρ . Now, it is essential to 

calculate the values of cmρ  and l

nρ  so that the error of profile 

matching l

mn
c
mn rr ~~ −  is the smallest possible. Taking into 

account the above relationships, we obtain: 

 ll

mmn
c
n

c
mn rr ρ−≅ρ− ~~ , Nn ,...,2,1= , Mm ,...,2,1= . (14) 

The number of equations MN ⋅  is much bigger than the 
number of unknown parameters. Furthermore, it should be 
noted that each measurement signal contains a noise. It is 
thus reasonable to introduce the index of profile matching: 

( )∑∑
= =

ρ+−ρ−=ρρρρ
N

n

M

m
mmn

c
n

c
mnM

c
N

c rrJ
1 1

2

11
~~

2

1
),...,,,...,( llll . (15) 

The values of ll

M
c
N

c ρρρρ ,...,,,..., 11  minimizing the index 

J  are calculated by equating the partial derivatives c
nJ ρ∂∂ /  

and l

mJ ρ∂∂ /  to zero. It is easy to check that this system of 

equations has infinitely many solutions. Indeed, if c
nρ  and 

l

mρ  constitute a certain solution to the system of equations, 

then the values of ε+ρc
n  and ε+ρl

m  for a certain value of 

ε  are also a solution to this system. Without loss of general-
ity, we can assume that the signal shift for the first round-

ness profile c
1ρ  is equal to zero. Finally, we obtain a system 

of equations that can be written in the matrix form:  

 bρA = , (16) 

where 

 T
M

c
N

c ]......[ 12
ll ρρρρ=ρ , (17) 
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After calculating the values of the parameters c
nρ  and l

mρ , 

we modify the value of the observed profile in accordance 
with the formula:  

 c
n

c
n

c
n rr ρ−ϕ=ϕ )(:)( ,  Nn ,...,2= , (20) 

 lll

mmm zrzr ρ−= )(:)( ,   Mm ,...,2,1= . (21) 

This approach can be slightly generalized. The axis of 
rotation in the instruments with a rotary table may be de-
pendent to a certain degree on the rotational velocity of the 
table (Fig. 3). The position of the axis of rotation may differ 
if measurements are performed by means of the cross-
section method (with the table in rotary motion) and the 
generatrix method (with the table at standstill). The change 
in the position of the table rotation axis can be compensated 
for by modifying the profile according to the following 
relationship: 

 c
n

c
n

c
n rr ρ−ϕ=ϕ )(:)( ,  Nn ,...,2= , (22) 

MmNnzDE

zDEzrzr

myy

mxxmmm

,...,2,1,,...,2,1,sin)(

cos)()()(

==ϕ∆+∆−
ϕ∆+∆−ρ−= lll

 (23) 

where yyxx DEDE ∆∆∆∆ ,,,  are additional parameters de-

fining the reciprocal position of the table axes. Like in the 

previous case, we assume that 01 =ρc . Moreover, the rela-

tive eccentricity xE∆  and yE∆  can be compensated for by 

selecting freely the parameters lmρ . We can, therefore, as-

sume that 0=∆=∆ yx EE . Finally, the parameters responsi-

ble for the profile matching are calculated by minimizing the 
index  
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thus 

 111 bρA = , (25) 

where 

 T
yx

T DD ]|[1 ∆∆= ρρ , (26) 
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Fig.3. Graphical representation of the difference in the object axis 
positions determined by means of the cross-section  and the gen-

eratrix methods: l

yx
c

yxyx EEE ,,, −=∆  and l

yx
c

yxyx DDD ,,, −=∆ , 

respectively; the results were obtained  for different cylindrically 
shaped objects. 

4.  EXPERIMENT 

The effects of the application of the profile matching al-
gorithms will be analyzed basing on the measurements of 
two rollers with a diameter of 52 mm and a height of 100 
mm, each. One specimen was polished and the other was 
ground. The measurements were conducted for the follow-
ing number of samples and cross-sections: 



 11=N ; 102=cN , 112=
l

M , 8=M . 

The cross and longitudinal sections are distributed uni-
formly.  

4.1. The roller with polished surface 

Figure 4 shows a diagram of measuring points in the cy-
lindrical coordinate system. As can be seen, there is a clear 
positive shift of profiles at the longitudinal sections in rela-
tion to those at the cross-sections. The difference is more 
visible in the point diagram in Fig. 5. where the values of 
profile radius at the points of intersection of the cross and 
longitudinal sections are shown. Red lines were drawn be-

tween points with the same coordinates ),( mn zϕ  to improve 

the diagram visibility. The root-mean-square and the arith-

metic mean of the difference l

mn
c
mn rr ~~ −  were: 

( ) 326,1~~1
2

1 1

df

=−=∆ ∑∑
= =
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n

M

m
mn

c
mnQM rr

MN
R l , and 

( ) 286,1~~1

1 1

df

−=−=∆ ∑∑
= =

N

n

M

m
mn

c
mnAM rr

MN
R l , respectively. 

As we can see, the profile shift exceeds 1µm.  

  

Fig.4. Spatial diagram of the 
measuring points in the cylindri-
cal coordinate system: surface 

after polishing 

Fig.5. Point diagram of the 
radius values at the points of 
intersection of the cross and 

longitudinal section trajectories 

If the algorithm is applied, then the matching parameters 
are as follows: 

c
N

c ρρ ,...,2 :  {-0.56139,  -0.170674,  -0.477659,   

-0.398797,  -0.447825,  -0.52142,  -0.360236,  -0.337582,   
-0.235581,  -0.437865} [µm], 

ll

Mρρ ,...,1 : {0.826792,  0.681831,  0.668199,  0.992521,  

1.12382,  1.17622,  1.08581,  0.859522} [µm], 

yx DD ∆∆ , :  {-0.0021617,  -0.001809} [µm/mm]. 

The root-mean-square and the arithmetic mean of the 
difference in the radii after matching were: 

0.08722 =∆ QMR  and 0=∆ AMR , respectively. 

The results of the optimal matching algorithm are very 
satisfactory. The root-mean-square of the difference in the 
radii decreased approximately twentyfold. The zero value of 
the arithmetic mean is obvious and results from the least 
squares principle. The next figures show diagrams of the 
profile after matching, i.e. the diagram in the cylindrical 
coordinate system, the diagram in the rectangular coordinate 

system and the point diagram of the radius values at the 
points of intersection. 

 

 

 

Fig.6. Spatial diagram of 
measuring points in the 

cylindrical coordinate sys-
tem after profile matching 

Fig.7. Spatial diagram 
of measuring points in 
the rectangular coordi-

nate system after profile 
matching 

 

Fig.8. Point diagram of the radius values at the points 
of intersection of the cross and longitudinal section 

trajectories after profile matching 

4.2. The roller with ground surface 

The tests were repeated for the roller with ground sur-
face. The root-mean-square and the arithmetic mean of the 

difference in the radii l

mn
c
mn rr ~~ −  were: 

0.480425 =∆ QMR  and 0.276946- =∆ AMR ,  

respectively. The profile shift is considerably smaller than in 
the previous case. This testifies to large randomness of the 
shift phenomenon. By applying the algorithm, it was possi-
ble to obtain the following values of the matching parame-
ters:   

c
N

c ρρ ,...,2 : {0.0763101,  0.452171,  -0.334644,  0.0463824,   

-0.10062,  -0.11645,  0.0498365,  -0.0082145,  0.0357696,   
-0.343175} [µm]; 

ll

Mρρ ,...,1 :  {-0.00555966,  -0.148586,  -0.154116,  

0.0255606,  0.418901,  0.519038,  0.796243,  0.587623}  
[µm], 

yx DD ∆∆ , : {-0.000490431,  0.00530184}  [µm/mm]. 

The root-mean-square and the arithmetic mean of the differ-
ence in the radii after profile matching were: 

0.235418  =∆ QMR  and 0=∆ AMR , respectively. 



As can be seen, the average difference in the radii de-
creased only twofold. This is due to the occurrence of large 
profile waviness component. The influence of the waviness 
on the value of the profile is rather accidental because of the 
measurement errors such as vibrations or measurement 
noise. The phenomenon was analyzed thoroughly in Ref. 
[11]. 

 

  

Fig.9. Spatial diagram of the 
measuring points in the cylin-

drical coordinate system: 
surface after grinding 

Fig.10. Point diagram of the 
radius values at the points of 
intersection of the cross and 

longitudinal section trajectories 

 

Fig.11. Spatial diagram of the 
measuring points in the cylin-
drical coordinate system after 

profile matching 

Fig.12. Spatial diagram of the 
measuring points in the rectan-
gular coordinate system after 

profile matching 

 

Fig.13. Point diagram of the radius values at the points of inter-
section of the cross and longitudinal section trajectories after 

profile matching 

5.  CONCLUSIONS 

The results of the measurements conducted by means of 
the bird-cage method for various cylindrically shaped ob-
jects show a shift in the average values of the profile meas-
ured with the cross-section and the generatrix methods. The 
shift may be up to tenths of the micrometer, and, in extreme 
cases, more than a micrometer. The shift is probably due to 
a different distribution of forces acting on the sensor tip 
during measurements with the cross-section and the genera-

trix methods. To eliminate the errors, it was necessary to 
formulate and solve the problem of optimal profile match-
ing, which involved shifting the profile values at the con-
secutive cross-sections in such a way that the difference in 
the radii at the points of intersection of the scanning trajec-
tories was the smallest possible. Additionally, it was essen-
tial to correct the difference in the rotation axis position 
during roundness measurements with the spindle in rotary 
motion and during straightness measurements with the spin-
dle at standstill. The results of the experiment show that due 
to the optimal profile matching, the root-mean-square of the 
difference in the radii at the points of intersection of the 
scanning trajectories may decrease from several to several 
dozen times depending on the level of the waviness compo-
nent.  

REFERENCES 

[1] Chou Skuo-Yan, Sun Chung-Wei, “Assessing cylindricity 
for oblique cylindrical features”, Int. J. of Machine Tools & 
Manufacture, vol. 40, pp. 327-341, 2000. 

[2]  K.D. Summerhays, R.P. Henke, J.M. Balwin, R.M. Casssou, 
C.W. Brown, “Optimizing discrete point sample patterns and 
measurement data analysis on cylindrical surfaces with 
systematic form deviations”, Precision Engineering, vol. 26, 
pp. 105-121, 2002. 

[3] W. Gao, J. Yokoyama, H. Kojima, S. Kiyono, “Precision 
measurement of cylinder straightness using a scanning multi-
probe system”, Precision Engineering, vol. 26, pp. 279-288, 
2002. 

[4] Y.-Z. Lao, H.-W. Leong, F.P. Preparata, G. Singh, “Accurate 
cylindricity evaluation with axis-estimation preprocessing”, 
Precision Engineering, vol. 27, pp. 429-437, 2003. 

[5] S. Adamczak, D. Janecki, “A concept of reference 
measurements of cylindrical machine parts”, Proceedings of 
the 9th Conference on Metrology in Mechanical Engineering 
Technologies, Częstochowa University of Technology, 
vol. 1, pp. 189-196. Poland, 2001 

[6] D.G. Chetwynd, A unified approach to the measurement 
analysis of nominally circular and cylindrical surfaces, 
Doctoral Thesis, University of Leicester, 1980.  

[7] D. Janecki, K. Stępień, “Applying normalized cross 
correlation function to the comparison of cylindricity 
profiles”, Metrology and Measurement Systems, vol. 11, n. 3, 
pp. 209-220, 2005. 

[8] STANDARD: ISO/TS 12180: Geometrical Product 
Specifications (GPS) - Cylindricity - Part 1: Vocabulary and 
parameters of cylindrical form, Part 2: Specification 
operators, 2003. 

[9] S. Adamczak, D. Janecki, J Świderski, “Combined 
roundness and straightness measurement applied to the 
assessment of cylindricity profiles of machine parts”, 
Pomiary, Automatyka, Kontrola, n. 5, pp. 248-250, Warsaw 
2008. 

[10] D. Janecki, S. Adamczak, K. Stępień, “Calculating 
associated cylinder axis for elements measured by the bird-
cage method”, pp. 156-160, 9th ISMQ, Chennai, India, 2007. 

[11] S. Adamczak, D. Janecki, R. Domagalski, “Experimental 
significance of the calculation of harmonic components in 
roundness and waviness profiles”, Pomiary, Automatyka, 
Kontrola, n. 5, pp. 17-20, Warsaw 2000. 

 

 


	PagNum1784: 1784
	ISBN1784: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum1785: 1785
	PagNum1786: 1786
	PagNum1787: 1787
	PagNum1788: 1788
	PagNum1789: 1789


