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Abstract − When applying digital sampling to high-

accuracy electrical measurements, aliasing and quantization 
errors contribute significantly to increase the incertitude.  
Fractional delay is a simple technique to reduce both errors, 
improving the accuracy of electrical digital measurements. 
In this paper we apply the fractional delay technique to 
asynchronous data acquisition and harmonic estimation of 
periodic signals. We also combine the use of the fractional 
delay technique with Principal Component Analysis. We 
present simulations and laboratory measurements to 
illustrate both techniques.  
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1. INTRODUCTION  

 
Digital sampling is often used in electrical 

measurements. Although it is a fast and relatively simple 
method, for high-accuracy measurements errors in digital 
sampling can be significant [1],[2]. Methods to estimate and 
to reduce these errors are a main concern in electrical 
metrology.  

When analog-to-digital converters (ADC) are applied to 
low-frequency AC voltage measurements, two important 
and correlated error sources are aliasing and quantization. If 
we consider, as an example, the high-accuracy measurement 
of harmonics in low-frequency periodic signals, it is 
important to reduce quantization error by increasing the 
resolution of the ADC. At the same time, sampling rate 
should be high enough to mitigate aliasing distortion. 
Furthermore, distortion introduced by anti-aliasing filters 
should be minimized.  

The use of a fractional-delay (FD) sampling algorithm 
allows one to reduce significantly the aliasing error, at the 
same time avoiding the need of high-sampling rates and 
distortions in the original signal. The use of fractional delay 
in sampling systems is not new, having been applied, e.g., to 
filter design [3].  

In this paper we describe the properties of fractional-
delay sampling of periodic signals applied to high-accuracy 
electrical measurements. This paper also describes a 

technique that combine fractional-delay sampling with 
Principal Component Analysis (FD-PCA).  

In the following sections we describe both techniques; 
we also present simulation results as well as results obtained 
using an asynchronous data-acquisition system with a single 
high-accuracy multimeter operating as ADC, in order to 
verify accuracy improvements obtained by the proposed 
techniques.  

2. ALIASING ANALYSIS AND FRACTIONAL 
DELAY  

The sampling theorem [1] states that if signal function 
f(t) is bandlimited with finite energy, it can be completely 
reconstructed after being sampled, as  
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where Ω is the bandwidth and sinc(x) = sin(x)/x . 
It is a mathematical idealization to assume that a signal 

function is bandlimited with finite energy and infinite 
duration. Finite-duration signals are indeed not bandlimited, 
as stated by the uncertainty principle. The reconstructed 
signal function f(t) then takes the form  
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where RΩf(t) is the aliasing error for a bandwidth of Ω = 
2πMf0, f0 is the signal frequency, and M is the number of 
harmonics. 
    In practice, the signal to be sampled by an ADC is of 
limited time duration and often possesses a much wider 
frequency band than that of the converter. 

In the following subsection we present a description of a 
fractional delay sampling technique using discrete Fourier 
transform (DFT), showing that it is possible to eliminate 
most of the aliasing while both avoiding an increase of the 
quantization error and reducing the need of anti-aliasing 
filters.  



2.1. Fractional Delay 
Let f(t) be a periodic signal with frequency ω0 = 2πf0, 

which can be written as an infinite series of sines and 
cosines.  
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where F(υ) is the Fourier transform of f(t) and ℜ∈kk ba ,   
for all k. Consider that F(υ)→0 as υ→∞, strictly decreasing 
for all F(υ-kω0) ∉0, υ ∉0. 

Consider now that f(t) is sampled at t = nts+dl,m, where 
the rate ts = 1/(Nf0), and the delay dl,m = (ts/2m) l  for l,m ∈N. 
If (l/2m)∈N, then dl,m is an integer delay, else dl,m is 
fractional. 

To simplify our analysis, our signal of interest f(nts) will 
consist of a cosine series, with fractional delay dl=1,m=1 = ts/2, 
as 
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where YA(υ) is the discrete Fourier transform of fA(nts) and 
RΩ(υ) denotes the spectrum extension beyond region [-N/2 
ω0, N/2 ω0], that will cause aliasing error in the harmonic 
estimation. As described in [1], the frequency spectrum 
YA(υ) of fA(nts) will present alias, that is, due to under-
sampling, reflections of the signal spectrum will overlap.  

Considering only the right side of the spectrum, the 
harmonics with frequencies in the interval [(N/2+1)ω0, Nω0] 
are reflected in the region [0, N/2 ω0] with a frequency 
translation of 2π from the original signal as  

)1(
1

2

1
01 )()( N

kj

N

k
kN ekaY

+
−

=
−∑ −=

π
ωυδυ                              (7) 

 Whereas the harmonics with frequencies in the interval 
[(3N/2-1)ω0, Nω0] are reflected with a frequency translation 
of 2π as 
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 This reasoning can be extended to all reflections of the 
original spectrum. Therefore Equation (6) can be rewritten 
as 
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where υ∈[0,Ω]. 

After the complex function YA(υ) is decomposed in real 
and imaginary parts, its magnitude is obtained, as 
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Consider now an integer delay dl=2,m=1 = ts, f(nts) can be 
rewritten as 
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for NnNkdk ml ≤≤=== 0,21,20 πω . 
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 The same reasoning applied to fA(nts) can be done for 
fB(nts), obtaining the magnitude of YB(υ) as 
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When we compare Equations (10) and (13), it is possible 
to observe that some of the terms, [amN-k, amN+k] for m odd, 
have opposite signals in each equation. 

We have the coefficients CFD(k) = ak -∑m=1
∞ [a(2m-1)N-k + 

a(2m-1)N+k]  + ∑m=1
∞ [a2mN-k + a2mN+k]  concerning the 

fractional delay sampling, and CID(k) = ak+∑m=1
∞ [a(mN-k) + 

a(mN+k)] concerning the integer delay sampling. Now 
suppose that CFD(k) and CID(k) are both positive or both 
negative. Comparing CFD(k) and CID(k) we observe that this 
condition is true if ak+∑m=1

∞ [a2mN-k + a2mN+k] ≥ ∑m=1
∞ [a(2m-

1)N-k + a(2m-1)N+k]. Considering the condition above, we have 
that the average of |YA(υ)| and |YB(υ)| becomes equivalent to 
the magnitude of the average of  YA(υ) and YB(υ) as 
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Now comparing Equations (10), (13) and (14) we can 
see that part of the reflected harmonics, those with 
coefficients amN-k, amN+k, m odd, are eliminated in |Y (υ)|. 
That occurs due to different phase shifts in the reflected 
harmonics for fractional and integer delays. Those results 
are true even for signals with high harmonic distortion, as 
the square and ramp waveforms, and for a small N. 

It is important to observe that the most significant 
reflected harmonics, with frequencies in the interval 
[(ω0(N/2), ω0(3N/2)] and coefficients aN-k, aN+k, are 
eliminated by a simple average.  

Usually most of aliasing error energy is in the interval 
above, therefore in many cases we can eliminate the 
necessity of an anti-aliasing filter with this technique. Even 
if the anti-aliasing filter is still necessary, it will be much 
easier to design. The use of the fractional delay technique 
allows the anti-aliasing filter to have higher cut-off 
frequency and softer decay, if it is at all necessary, without 
the need to increase the sampling frequency. 

Since the number of quantization bits is directly related 
with the sampling interval, for high-accuracy measurements 
it is important to consider a high sampling interval. The use 
of fractional delay, besides reducing the need for filters,



allows eliminating most of the aliasing error without an 
increase of the sampling rate. As a consequence, it allows 
more quantization bits to be used. 

Even if the fractional delay technique introduces twice as 
many data to process, the accuracy of the data acquisition 
system usually is a much more complex problem than data 
processing, that can be easily done by any computer. 

3.  PCA APPLIED TO HARMONIC ESTIMATION 

The Principal Components Analysis (PCA), as the 
Fourier transform, can be defined as a linear decomposition 
of the original signal in specific bases. Considering this fact, 
PCA can also be applied to harmonic estimation of periodic 
signals. 

Consider now the periodic signal f(t) described in the 
previous section. After a positive zero-level crossing of this 
signal, N samples are acquired during a single period, in 
sequence, at time intervals separated by ts seconds. After the 
next positive zero crossing, a time interval of df is waited 
before restarting the acquisition, obtaining that way two 
sample sequences of N samples, with a delay df between 
them. This process is then repeated until the acquisition of 
n ≥  N sample sequences, each delayed of df from the 
previous sequence. 

A data matrix Mf is created, where each sample sequence 
corresponds to a different row. When PCA is applied to the 
data matrix Mf, the obtained eigenvalues correspond to the 
amplitude of the harmonics of f(t). If df is a fractional delay, 
the results of previous section can also be applied to PCA. 

4.  EXPERIMENTAL RESULTS 

In order to illustrate the efficiency of the fractional delay 
technique and of the combined technique PCA-FD in 
reducing aliasing errors, both computer simulations and 
laboratory measurements have been done. These results are 
shown in the following subsections.  

4.1. Simulations 

Simulations were conducted using the software Scilab to 
simulate numerically the square waveform shown in the 
following equation: 
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The signal f(nts) is sampled from f(t) at f0 = 50 Hz, M = 
N/2 = 75, and a sampling rate ts = 1/(2Mf0) ≈ 133.4 μs. To 
illustrate the results of the Equation (14), we generate f(nts), 
first without delay, and then with fractional delay df=ts/2= 
66.7 μs. We denote here |Y(υ)| the magnitude of the discrete 
Fourier transform of signal f(nts), without delay. We also 
denote |Y(υ)| the average of the magnitudes of the discrete 
Fourier transforms of signal f(nts), generated both without 
delay and with the fractional delay df. 

Consider the aliasing errors |Y(υ)|-|YREF(υ)| for the 
integer delay and  |Y(υ)|-|YREF(υ)| for the fractional delay, 
where YREF(υ) is the DFT of the reference signal fREF(nts), 
band-limited  to  the  M  first  harmonics  of  f(t).  We  can  

Fig. 1. Square Waveform - Simulation Results. 
 
observe in Fig. 1 that the aliasing error for the integer delay 
is much higher than the aliasing error for the fractional 
delay. Notice that the even harmonics are all zero for this 
signal, so Fig. 1 shows only odd harmonics. 
 To illustrate now the results of section 3 we created a 
matrix Msim, considering a delay df, and n = 2N. To calculate 
the harmonics of f(nts), we multiplied the matrix Msim by its 
transpose, and then obtained the eigenvalues. We created a 
vector vsim with the eigenvalues organized in decreasing 
order. Each element corresponds to a different frequency. To 
verify this algorithm, we also created a reference vector vref, 
where each element vref(k) = 4/(2kπ), for 1 ≤ k ≤ M. The 
difference between vsim and vref, denominated Esim, is also 
shown in Fig. 1.  

The upper part of Fig. 1 shows the previously discussed 
results for the integer delay df = ts. In this case, both 
techniques, FD-DFT from section 2 and FD-PCA from 
section 3, present the same results, estimating the harmonics 
without reducing aliasing. The total aliasing error, in both 
cases, is ||Ealias|| =∑υ=1

N/2-1 ||Y(υ)|-|YREF(υ)||≈  0.28. The 
lower part of Fig. 1 shows the results, for both PCA and 
DFT, for a fractional delay df = ts/2. In this case, the 
algorithms have different results. Although both algorithms 
present a reduction of the aliasing error, PCA is more 
efficient, reducing the total aliasing error in approximately 
90%. The total aliasing error for the fractional delay is 
||EDFT|| ≈ 6.50 x 10-2 for DFT and ||EPCA|| ≈ 3.06 x 10-2 for 
PCA.                    
  
4.2. Data Acquisition 

 
To confirm further the results obtained in the previous 

subsections, several laboratory measurements were done 
with the 8 1/2-digit multimeter Agilent 3458A  operating  as 
an ADC. The programmable waveform generator Agilent 
33250A was used to synthesize the waveforms. Both 
equipments were controlled by a PC through GPIB ports and 
the Labview software. We employed the Agilent 3458A 
multimeter  as  our  ADC  due  its  stability,  low-noise,  and  



Fig. 2. Square Waveform - FD-DFT. 
 
high sampling rate; as well as to its popularity in different 
areas of electrical metrology [4], [5].   

We did asynchronous measurements using the 
multimeter internal trigger to start the data acquisition at a 
positive zero-level crossing. In this measurement 
experiment, we programmed the generator to create the 
square waveform described in Equation (15), considering 
the parameters described in the previous subsection and 
amplitude 1 V. For this experiment, we selected the aperture 
time ta = 100 μs, which guarantees 21 bits for quantization 
[6], [7].  

From each cycle of the waveform we obtained a 
sequence of N=2M=150 samples. Although only two 
sampled sequences delayed of df=ts/2 were necessary, we 
acquired 2N=300 sampled sequences with the fractional 
delay between each, in order to reduce noise and gain drifts 
of the generator. 

In Fig. 2, we compare the data aliasing errors with the 
simulation errors for the square waveform, considering the 
technique FD-DFT described in section 2. If we consider the 
signal sampled with an integer delay (ID), we can observe 
the influence of the ADC integration process, that presents 
the effect of a low-pass filter, [2], [6].  The total data 
acquisition aliasing error is ||EDFT DATA|| ≈ 0.15. Considering 
now the fractional delay (FD), both simulation and data 
acquisition errors are approximately the same. In this case 
the integration process is not significant. The total data 
acquisition aliasing error for fractional delay is ||EDFT DATA|| 
≈ 5.8 x 10-2, a reduction of 80% in comparison to the 
original aliasing error.  

We also applied the combined technique and PCA-FD to 
data acquisition. We used 2N = 300 sampled sequences to 
generate de data matrix Mdata, and then to calculate the 
eigenvalue vector vdata. The difference between vdata and the 
reference vector vref, denominated Edata, is shown in Fig. 3, 
for both an integer delay (ID) df = ts and a fractional delay 
(FD) df = ts/2. In this figure a comparison between the data 
acquisition error Edata and the simulation error Esim is also 
presented. 

Fig. 3. Square Waveform - FD-PCA. 
 

 Here also we can observe the influence of the ADC 
integration process. When we consider the integer delay the 
total data acquisition aliasing error is ||EPCA DATA|| ≈ 0.15. 
Considering now the fractional delay, the total data 
acquisition aliasing error is ||EPCA DATA|| ≈ 3.04 x 10-2, a 
reduction of 90% in comparison to the original aliasing 
error.  

It is important to observe that, if instead of fractional 
delay we had sampled our signal with a sampling rate twice 
as larger, we would loose several bits of resolution. Besides 
that, with fractional delay (FD-DFT) we eliminated the 
aliasing up to the 3Mth harmonic, and with the higher 
sampling rate we would only eliminate the aliasing up to the 
2Mth harmonic. 

5.  CONCLUSIONS 

In this paper we applied the fractional delay sampling 
technique to estimate harmonics in asynchronous sampled 
signals. We also combined this fractional-delay technique 
with PCA. Both techniques allow a significant reduction of 
aliasing error, at the same time avoiding the need of high 
sampling rates and distortions of the original signal. The 
efficiency of these techniques was verified by both 
simulations and laboratory measurements. 

REFERENCES 

[1]    P. L. Butzer, G. Schmeisser, R. L. Stens, “An Introduction to 
Sampling Analysis,” Nonuniform Sampling - Theory and 
Pratice - Chapter 2, F. Marvasti (Editor). Kluwer Academic, 
New York, 2001. 

[2]   R. Vasconcellos, M. Campos “Sampling Errors Analysis 
Applied to High-Accuracy Measurements”, CPEM 2008, 
Colorado, June 2008. 

[3]    V. Välimäki, T. I. Laakso, M. Karjalainen, U. K. Laine, 
“Tools for Fractional Delay Filters Design,” IEEE Signal 
Processing Magazine, pp. 30-60, Jan. 2005. 

[4]  G. Kyriazis, M. Campos, “An Algorithm for Accurately 
Estimating the Harmonic Magnitudes and Phase Shifts of 
Periodic Signals with Asynchronous Sampling,” IEEE 
Trans. Instrum. Meas., v. 54, n. 2, pp. 496-499, Apr. 2005. 

 



[5]   R. Iuzzolino et. al., “Investigation on the nonidealities of 
Analog-to-Digital converters with a Josephson waveform 
synthesizer,” VII SEMETRO, Belo Horizonte, Brazil, Sep. 
2007. 

[6]   R. L. Swerlein, “A 10 ppm Accurate Digital AC Measurement 
Algorithm,” Proc. NCSL Workshop and Symp., pp. 17-36, 
1991. 

[7] “3458 Multimeter User's Guide,” Edition 4, Agilent 
Technologies, 2000. 


	PagNum668: 668
	ISBN668: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum669: 669
	PagNum670: 670
	PagNum671: 671
	PagNum672: 672


