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Abstract − Validation of a numerical simulation based 

on mathematical model is part of its development and in 
practice this validation is based on the comparison with 
experiments. However, the uncertainty of experiment and 
numerical simulation has not yet received any attention. 
Generally, only a qualitative assessment of the numerical 
simulation is provided. Knowledge of the uncertainty is 
required in order to compare the results since it allows users 
of the result to assess its reliability. This paper emphasizes 
numerical simulation components uncertainties. A 
procedure is adopted to validation of numerical simulation 
considering the uncertainties and an illustrative calculation 
will be discussed. 
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1.  INTRODUCTION 

In recent years, considerable attention has been 
concentrated on developing sophisticated models capable of 
predicting various processes. The development of numerical 
methods for modeling these processes is helpful in 
designing and controlling processes in order to achieve 
better quality products. Numerical simulation based on valid 
mathematical models offers opportunities to gain insights 
into various physical phenomena that are difficult, if not 
impossible, to extract through experiments. Thus, modeling 
becomes more attractive for exploring novel processing 
schemes. However, in carrying out this development it is 
necessary to know if the complete numerical model, 
governing equations, boundary conditions and numerical 
solutions are a reasonable representation of the physical 
reality. Furthermore, if the numerical solution scheme 
accurately solves the governing equations [1-2]. 

The first of these questions involves the comparison with 
experiments, process measurements and to some extent 
physical intuition. Answering the second question is a large 
problem in numerical analysis. A direct way of accessing 
the accuracy of a given numerical scheme is to compare 
predictions against test solutions, i.e. analytical, semi-
analytical or approximated solutions of limiting cases of the 
model. A weakness in this approach is that these limiting 
models may be far removed from the system of interest. 

Also, in some cases, due to the high costs, available 
experiment data are very limited and therefore there is no 
measure correspondence with any data model. This means 
that we can say only that it is good, bad, etc. These are 
sometimes preliminary analysis that can be useful as a guide 
for the next set of analysis, but it is exceedingly dangerous 
to base any design decisions on them [3-4]. 

The terms verification and validation are frequently 
found in literature and apparently seem to be easily 
understood intuitively. However, in practice these terms are 
source of confusion. Verification is a process to check the 
correctness of the solution of the governing equations. 
Verification does not imply that the governing equations are 
appropriate; only that the equations are being solved 
correctly. Validation is a process to determine the 
appropriateness of the governing equations as a 
mathematical model of the physical phenomena of interest. 
Typically, validation involves comparing model results with 
experimental measurements. However, some of the works 
only provide a qualitative assessment of the model, 
concluding that the model agreement with a particular 
experiment is good or reasonable. Sometimes, the 
conclusion is that the model works well in certain cases, not 
as well in others. Moreover, recent reviews of some models 
have suggested the existence of significant differences 
between models. Generally the validation takes in count 
only the difference between the results, without considering 
the uncertainty of the experiment and neither the uncertainty 
of the numerical simulation. However, all experiments are 
subject to imperfections. As well as, in the mathematical 
model, for example, its construction (e.g., a partial 
differential equation) involves idealizations and inexactly 
known values for geometric quantities, parameters and 
material constants. Some examples of sensitivity studies, 
which are part of the development model, are provided. 
Model parameters can be the physical properties, boundary 
conditions, initial conditions, etc. The parameters can also 
be purely numerical, like the size of the numerical grid. 

The validation must provide the information to address 
adequacy, before stating whether a given model is validated 
for its application or not. Before we proceed with the 
validation process, we have to know the requirements our 
product or system will have to meet and which ones our 
model is to address. Thus, it has become evident that to 



establish mutual confidence between the experiment and 
numerical simulation, it is necessary to estimate their 
uncertainties. When uncertainty is not taken into account it 
is not possible to compare two results. Verification and 
validation contributes directly to the decision process for 
investment, through quantification of uncertainties at the 
confidence for margin and reliability assessments. The 
objective of the current paper is to present a discussion 
about validation of numerical simulation based on 
mathematical models. Different components of uncertainties 
are discussed, with emphasis on numerical simulation 
components uncertainties.  

2.  UNCERTAINTY OF NUMERICAL SIMULATION 

The uncertainty in the experimental result is calculated 
on the basis of the uncertainty in the measurements of all the 
related independent variables. It is usually given as a 95 % 
level of confidence and would normally be expressed in the 
appropriate SI units [5]. Detailed descriptions and 
information on the implementation of this methodology 
have been published by ISO and made available over the 
Internet. Fig. 1 shows typical scenarios arising when it is 
compared results of experiment and numerical simulation 
based on mathematical model considering the uncertainties. 

 

Fig. 1.  Comparing of measurement results of experiment and those 
obtained  from  mathematical model a) result of mathematical 

model out of upper limit expanded uncertainty interval of 
experiment U95% b) result of mathematical model above upper limit 

and its expanded uncertainty interval is partially below of upper 
limit expanded uncertainty interval of experiment c) result of 
mathematical model below limit and its expanded uncertainty 

interval is partially below of upper limit and d) results plus 
expanded uncertainty within expanded uncertainty interval of 

experiment. 

When estimating the uncertainty we must remember that 
it is neither routine task nor a statistical exercising. Our 
approach must depend both on a total description and 
knowledge of the process. The quality and applicability of 
the uncertainty value depends mostly on understanding, 
critical analysis, and completeness of all contributing 
factors. An estimate of uncertainty of numerical simulation 
model should be based on the combination of a number of 
components of uncertainty such as uncertainty due to inputs 

of the models (e.g. physical properties, boundary conditions, 
initial conditions, etc), numerical procedure (e.g. mesh test 
and numerical scheme) and simplifying assumptions. Some 
of these components are well defined and evaluated while 
others are based on varying degrees of knowledge and 
experience. All factors which will have a significant 
influence on the test must be included in the estimation 
process. 
 
a) Model inputs 

The point has been reached where, if appropriate input 
quantities/data are employed, one can be reasonably 
confident in the quality of the model represented by 
governing transport equations. The input quantities of a 
model are of two categories: those that are submodelled as 
functions of other quantities; and those that are not modeled. 
In many cases these quantities are in the form of a table, say 
in a handbook of material properties. The best estimate of a 
quantity is then, simply, the value read from the table. In 
general, the entries in the table will have been established 
empirically, on the basis of experiments carried out 
elsewhere. However, rarely, if ever, will those values be 
given together with their corresponding uncertainties. In the 
absence of specific information on this matter, the user may 
use his/her judgement to set a maximum error for the values 
in the table. To estimate a value of this quantity, one has to 
consider factors such as the presumed difficulty in the 
measurement, the year in which the table was made, the 
reliability of the source, the values of the same quantity 
tabulated in other handbooks, etc [6].  

 
b) Numerical procedure 

Every numerical method has a set of problems for which 
it is valid. Sometimes you can prove that a certain problem 
is not in that set but you cannot prove that it belongs to the 
set. Thus, all numerical approximation schemes are prone to 
a degree of error. Some errors are a result of truncation of 
additional terms in series expansions. Others are a result of 
the order of the differencing scheme used for the 
approximation. There are a number of ways in which a 
differential equation can be converted into its discrete 
counterpart. For example, an analytical solution consists of 
an expression for T (temperature) in terms of x. The 
numerical solution, by contrast, is given in the form of the 
numerical values of T at a finite number of locations (grid 
points). The discrete values of T are governed by algebraic 
equations, which we call discretization equations. When 
only a small number of grid points are used to discretize the 
calculation domain, the discretization equations represent an 
approximation to the differential equation. This approach 
involves discretizing the spatial domain into finite control 
volumes using a mesh. Then, the resulting numerical 
solution would normally not coincide with the exact solution 
of the differential equation. As we increase the number of 
grid points, the numerical solution becomes more accurate 
and approaches the exact solution. For many problems, even 
a modest number of grid points can lead to solutions that are 
sufficiently accurate for practical purposes. Furthermore, for 
many problems for which exact analytical solutions may not 
be available, we can treat the numerical solution as 



sufficiently accurate when a further increase in the number 
of grid points does not alter the solution. In general, the finer 
the numerical grid, the better the numerical solutions of the 
equations. However, because of the non-linearity of the 
equations, the decrease in discretization error does not 
necessarily translate into a comparable decrease in the 
discretization error. To find out what effect a finer grid has 
on the solution, model users usually perform some form of 
grid sensitivity study in which the numerical grid is 
systematically refined until the output quantities do not 
change appreciably with each refinement. Thus, there are 
errors due to an unsuitable selection of numerical method 
and numerical errors within the selected numerical method. 
 
c) Assumptions 

Several assumptions are typically introduced to simplify 
the solution of the conservation equations. There are always 
phenomena that we have decided not to include in the 
model. Applications of these assumptions have confirmed 
important features that were previously observed but had 
eluded prediction. Moreover, there are various formulations 
for the same assumption. It is interesting to examine the 
differences between the alternative formulations and to 
investigate how the predictions change when alternative 
formulations are employed. Some of these assumptions 
might be found to be negligible, while others could be 
substantial, depending on various factors including the 
nature of the assumption being investigated. Each of these 
assumptions can be further separated into very specific 
factors, depending on their needs and the applications. To 
estimate the effect of these assumptions added/subtracted 
terms in the equations. In general in order to better evaluate 
and understand models, the effects of these assumptions on 
the resulting model predictions need to be investigated. 

3.  VALIDATION OF NUMERICAL SIMULATION 

The quality and applicability of the uncertainty value 
depends mostly on understanding, critical analysis, and 
completeness of all contributing factors of numerical 
simulation. It is best if the experiment is designed purely to 
validate a model, in which case one can eliminate error 
sources by simplifying the geometry and materials. For its 
evaluation it is proposed the following plan. 
 
Step1: To verify that the equations are not violating 

fundamental laws like conservation of matter and 
energy. 

Step 2: To describe the variables, parameters, formulations 
assumptions and interrelationships between those. 
To inform all types of numerical errors and 
modeling errors. To identify uncertainty sources. 
Concentrate efforts on significant sources of 
uncertainty. 

Step 3:  To get two sets of data that cover the whole range of 
the values found. Also, do it for alternatives 
formulations and assumptions. It is important to 
show the origins of its data for comparison.  

Step 4: Calculate the maximum difference between the 
measured and predicted values and standard 
uncertainty for each component. 

 
Step 5: Compare each result with respect to the stated 

uncertainty the results of experiment. 

4. ILLUSTRATIVE EXAMPLE 

In order to illustrate the validation of numerical 
simulation results of different simulations were compared to 
assess the effect of including different approach and data in 
the calculation of freezing point of zinc. Comparison has 
been made between predictions obtained when using 
different formulations/data that are available in the 
literature. For our purposes, the most important sources of 
uncertainty are due to interfacial area concentration, drag 
interaction term, permeability coefficient, mesh test, 
thermophysical properties (specific heat, thermal 
conductivity and latent heat) and partition equilibrium 
coefficient [7]. 

The simulated geometry is shown in Fig. 2. The size was 
selected to be representative of a laboratory cell where the 
melt is placed in a cylindrical graphite crucible; a hole in a 
removable graphite top allows a graphite thermometer well 
to be axially located in the melt. The symmetry of the cell 
allows a ¼ section of the geometry to be modelled. The top, 
bottom and the left wall of geometry the cell are insulated 
while a temperature is prescribed at the right wall (the 
crucible external radius). All walls are treated with a no-slip 
condition and are impermeable to mass and species 
transport. The melt is initially isothermal and chemically 
homogeneous. In all simulations presented in this paper the 
initial temperature was 5 K  higher  than  the  liquidus  
temperature.  At  time  t = 0, the temperature of the crucible 
external radius was altered to 692,677 K and it was reduced 
with a freezing  rate at about 0,01 K/s. The interfacial length 
scale was assumed equal 0,2 mm and diffusion lenghts for 
all species are assumed equal 0,01 mm. These quantities are 
constants and assumed to be representantive of those found 
in literature for zinc point. The freezing curves were 
deduced from temperature in the themometer-well, where 
the sensing element of the thermometer is axially located. 

 

Fig. 2.  Geometry of cell zinc point. 

a) Interfacial area concentration 



 
The interfacial area concentration characterizes the 

topology of the interfacial structures and is thus related to 
complex microscopic phenomena. It plays important roles in 
the modeling of the interfacial terms and need to be modeled 
through supplementary relations, which can be developed 
from either experiments or certain theoretical 
concentrations. Two cases were investigated, the mixture 
model and envelope dendrite model. The mixture model is a 
model that treats both phases symmetrically. It is 
appropriate as a first approximation for more complex 
problems [8]. In the dendrite envelope model the area 
concentration is modeled as equivalent cylinders. These are 
most appropriated for the columnar growth [9]. 

 
b) Drag interaction term 

 
Flow through a mushy zone consisting of a continuous 

solid structure such as columnar dendritic crystals is usually 
very slow due to the high value of the interfacial area 
concentration. Firstly, the dissipative interfacial stress was 
modeled approximately by Darcy’s law [10]. In addition, the 
permeability was converted into a drag coefficient [11]. The 
modeling of this term requires experimental calibration to 
link the drag coefficient to microstructural parameters. 
However, a generalized expression was used to estimate this 
term (Fig. 3). 

 

Fig. 3.  Drag interaction term effect. 

c) Permeability coefficient  
 
The permeability coefficient contains the interfacial area 

concentration implicitly. Assuming the permeability to be 
isotropic, it was evaluated from the Blake-Koseny model. 
This value is based on experimental measurements for low 
liquid fractions and is based on analytical solutions for flow 
through arrays of high liquid fractions. This model has been 
used extensively in solidification simulations with constant 
permeability. Since permeability coefficient of dendritic 
structures is typically of the order of 10-10 m2 to 10-14 m2 ten 
simulations were run with these values (Fig. 4) [7].  

 

Fig. 4. Permeability  coefficient  effect   a)  Co = 10-10 m2    

b)   Co = 10-14 m2. 

d) Mesh test 
 
Often, the first step after the development of the model is 

the mesh test. This test is used to refine the surface and 
volume mesh in regions of model, generating progressively 
finer elements. At the end of each run, the results were 
compared. The final mesh was selected when the difference 
between the results of two successive curves of 
solidification was lesser than experiment uncertainty 
measurement. The final mesh contains 48 994 tetrahedrons 
elements. The bulk of the geometry contains total number of 
9 990 nodes  (Fig. 5). 

 

Fig. 5. Red triangular surface mesh covering the surface of the 
geometry. 

e) Thermophysical properties/partition coefficient 
 
Two different predicted curves of solidification, using 

two sets of data from the literature were compared [7]. 
Results of the solidification using different partition 
coefficients illustrated that the model is extremely sensitive 
to the specification of this parameter. The magnitude of 
difference for the other cases (thermophysical properties) 
was lesser than experiment measurement uncertainty.  



4.  RESULTS 

The results of the evaluation of numerical simulation are 
summarized in Table 1. The estimates for the influence of 
each component were deduced from the maximum 
difference between the results. The magnitude of difference 
varies from 0,1 mK to 0,6 mK with standard  uncertainty  
from 0,02 mK to 0,17 mK. The uncertainty due to 
experiment is 1 mK, which is higher than standard 
uncertainty of each component.  Taken all together, the 
present results should be viewed as an indication of what 
areas require more careful examination. 

Table 1.  Maximum difference between experiment and numerical 
simulation. 

Components Maximum 
difference 

/mK 

Standard uncertainty 
/mK 

Interfacial area 0,6 0,17 
Drag interaction term 0,4 0,11 
Permeability 
coefficient 

0,1 0,02 

Mesh test 0,6 0,17 
Thermophysical 
properties 

0,6 0,17 

 

5.  CONCLUSIONS 

Sufficient evaluation of numerical simulation based on 
mathematical models is necessary to ensure that those using 
the models can judge the adequacy of their technical basis, 
appropriateness of their desired use, and confidence level of 
their predictions. Most validation exercises are done simply 
to assess whether or not the model can be used for a very 
specific purpose. In general, the validation of numerical 
simulation is based on comparison with experiments. A 
weakness of this procedure is not to considering the 
uncertainty of experiment and numerical simulation. The 
result of an experiment or a numerical simulation is the 
estimate of the true value of the measurand. Thus, the result 
is imperfect. We have shown that it is possible to estimate 
the uncertainty of a numerical simulation. In this case, the 
estimation of uncertainty of numerical simulation is based 
on the combination of a number of influencing parameters 

(components of uncertainty) obtained from various 
predictions. Some of these components are well defined and 
evaluated, while others are based on varying degrees of 
knowledge and experience. A formal and rigorous 
evaluation is time consuming and expensive. The present 
results show that the standard deviation of each component 
is lower than uncertainty due to experiment, so there is a 
scope for further improvement in the model by refining the 
assumptions. 
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