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Abstract — Validation of a numerical simulation based Also, in some cases, due to the high costs, availab

on mathematical model is part of its developmerd an
practice this validation is based on the compariggth
experiments. However, the uncertainty of experimeamnd
numerical simulation has not yet received any &tian
Generally, only a qualitative assessment of the erigal
simulation is provided. Knowledge of the uncertging
required in order to compare the results sincddivg users
of the result to assess its reliability. This papemphasizes
numerical simulation components uncertainties.
procedure is adopted to validation of numericalutation
considering the uncertainties and an illustratiaécw@ation
will be discussed.
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1. INTRODUCTION

In recent years,
concentrated on developing sophisticated modelaldamf
predicting various processes. The development ofemical
methods for modeling these processes is helpful
designing and controlling processes in order toieaeh
better quality products. Numerical simulation basadvalid
mathematical models offers opportunities to gaisights
into various physical phenomena that are diffictflthot
impossible, to extract through experiments. Thusdeling
becomes more attractive for exploring novel procegss
schemes. However, in carrying out this developnieng

experiment data are very limited and thereforeeherno
measure correspondence with any data model. Thansne
that we can say only that it is good, bad, etc.s€hare
sometimes preliminary analysis that can be usefa guide
for the next set of analysis, but it is exceeding@ngerous
to base any design decisions on them [3-4].

The terms verification and validation are frequegntl
found in literature and apparently seem to be yasil

Aunderstood intuitively. However, in practice thésems are

source of confusion. Verification is a process beak the
correctness of the solution of the governing equisti
Verification does not imply that the governing etipias are
appropriate; only that the equations are being esblv
correctly. Validation is a process to determine the
appropriateness of the governing equations as a
mathematical model of the physical phenomena @afrést.
Typically, validation involves comparing model résuvith
experimental measurements. However, some of théswor

considerable attention has beepnly provide a qualitative assessment of the model,

concluding that the model agreement with a padicul
experiment is good or reasonable. Sometimes, the
igonclusion is that the model works well in certe@ses, not

as well in others. Moreover, recent reviews of sonuelels
have suggested the existence of significant diffeze
between models. Generally the validation takes annt
only the difference between the results, withoutsitdering

the uncertainty of the experiment and neither theettainty

of the numerical simulation. However, all experirtgeare
subject to imperfections. As well as, in the mathtoal

necessary to know if the complete numerical modelmodel, for example, its construction (e.g., a parti

governing equations, boundary conditions and nuwakri
solutions are a reasonable representation of thesiqdi
reality. Furthermore, if the numerical solution sofe
accurately solves the governing equatifh€].

The first of these questions involves the comparisadh

differential equation) involves idealizations anuexactly
known values for geometric quantities, parametend a
material constants. Some examples of sensitivityliss,
which are part of the development model, are prxlid
Model parameters can be the physical propertiesndbary

physical intuition. Answering the second questisrailarge
problem in numerical analysis. A direct way of &sing
the accuracy of a given numerical scheme is to esep
predictions against test solutions, i.e. analytice¢mi-
analytical or approximated solutions of limitingsea of the
model. A weakness in this approach is that thasdtitig
models may be far removed from the system of istere
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be purely numerical, like the size of the numergrad.

The validation must provide the information to aakdr
adequacy, before stating whether a given modedlisiated
for its application or not. Before we proceed withe
validation process, we have to know the requiremenir
product or system will have to meet and which ooas
model is to address. Thus, it has become evideait tth
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establish mutual confidence between the experinaemt
numerical simulation, it is necessary to estimateirt
uncertainties. When uncertainty is not taken intooant it
is not possible to compare two results. Verificatiand
validation contributes directly to the decision q&ss for
investment, through quantification of uncertaintiais the
confidence for margin and reliability assessmerfhe
objective of the current paper is to present a udision
about validation of numerical
mathematical models. Different components of udeties

are discussed, with emphasis on numerical simulatio

components uncertainties.
2. UNCERTAINTY OF NUMERICAL SIMULATION

The uncertainty in the experimental result is clalmd
on the basis of the uncertainty in the measurenudrah the
related independent variables. It is usually giaena 95 %
level of confidence and would normally be expressethe
appropriate Sl units ][5 Detailed descriptions and
information on the implementation of this methodplo
have been published by ISO and made available theer
Internet. Fig. 1 shows typical scenarios arisingemlit is
compared results of experiment and numerical sitiuna
based on mathematical model considering the uricges
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Fig. 1. Comparing of measurement results of expartrand those
obtained from mathematical model a) result ofhraatatical
model out of upper limit expanded uncertainty inétiof

of the models (e.g. physical properties, boundanddions,
initial conditions, etc), numerical procedure (engesh test
and numerical scheme) and simplifying assumptiG@usne

of these components are well defined and evaluatsitk
others are based on varying degrees of knowledgk an
experience. All factors which will have a signifita
influence on the test must be included in the esion
process.

simulation based on

a) Model inputs

The point has been reached where, if approprigtetin
gquantities/data are employed, one can be reasonably
confident in the quality of the model representegd b
governing transport equations. The input quantitiésa
model are of two categories: those that are subleadas
functions of other quantities; and those that atenmodeled.
In many cases these quantities are in the formtable, say
in a handbook of material properties. The bestregt of a
quantity is then, simply, the value read from thblé. In
general, the entries in the table will have bedaldished
empirically, on the basis of experiments carriedt ou
elsewhere. However, rarely, if ever, will those ued be
given together with their corresponding uncertatiln the
absence of specific information on this matter, uber may
use his/her judgement to set a maximum error fervedues
in the table. To estimate a value of this quantitye has to
consider factors such as the presumed difficultythe
measurement, the year in which the table was mtute,
reliability of the source, the values of the samardity
tabulated in other handbooks, 8.

b) Numerical procedure

Every numerical method has a set of problems fachvh
it is valid. Sometimes you can prove that a cerfamblem
is not in that set but you cannot prove that ibhgk to the
set. Thus, all numerical approximation schemegesae to
a degree of error. Some errors are a result ot#tion of
additional terms in series expansions. Others agsalt of
the order of the differencing scheme used for the
approximation. There are a number of ways in whéch
differential equation can be converted into itscrite
counterpart. For example, an analytical solutionststs of
an expression forT (temperature) in terms ok. The
numerical solution, by contrast, is given in thenfoof the

experimenlgsy, b) result of mathematical model above upper limitnumerical values of at a finite number of locations (grid

and its expanded uncertainty interval is partibyow of upper
limit expanded uncertainty interval of experimeptesult of
mathematical model below limit and its expandedentainty
interval is partially below of upper limit and djsults plus
expanded uncertainty within expanded uncertairtgriral of
experiment.

When estimating the uncertainty we must remembr th
it is neither routine task nor a statistical exsirg. Our

approach must depend both on a total descriptioth an

knowledge of the process. The quality and applitgbf
the uncertainty value depends mostly on understgndi
critical analysis, and completeness of all contiii
factors. An estimate of uncertainty of numericahgliation
model should be based on the combination of a numbe
components of uncertainty such as uncertainty dueputs

points). The discrete values dfare governed by algebraic
equations, which we call discretization equatiowghen
only a small number of grid points are used toreisze the
calculation domain, the discretization equationsesent an
approximation to the differential equation. Thispegach
involves discretizing the spatial domain into finicontrol
volumes using a mesh. Then, the resulting numerical
solution would normally not coincide with the exaotution

of the differential equation. As we increase thenbar of
grid points, the numerical solution becomes moreuete
and approaches the exact solution. For many prahlewen

a modest number of grid points can lead to solstibat are
sufficiently accurate for practical purposes. Ferthore, for
many problems for which exact analytical solutiomsy not

be available, we can treat the numerical solutieh a
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sufficiently accurate when a further increase i@ ttumber
of grid points does not alter the solution. In gahehe finer
the numerical grid, the better the numerical sohsiof the
equations. However, because of the non-linearitythef
equations, the decrease in discretization errors doet
necessarily translate into a comparable decreas¢hén
discretization error. To find out what effect adfingrid has
on the solution, model users usually perform soamenfof
grid sensitivity study in which the numerical grid

systematically refined until the output quantitide not
change appreciably with each refinement. Thus,ettae
errors due to an unsuitable selection of numenicathod
and numerical errors within the selected numerieathod.

¢) Assumptions

Several assumptions are typically introduced topsfsn
the solution of the conservation equations. Theeeadways
phenomena that we have decided not to include @
model. Applications of these assumptions have cmefl
important features that were previously observet had
eluded prediction. Moreover, there are various fdations
for the same assumption. It is interesting to examnthe
differences between the alternative formulationsl d@a
investigate how the predictions change when altema

Step 4: Calculate the maximum difference between th
measured and predicted values and standard
uncertainty for each component.

Step 5: Compare each result with respect to theedta
uncertainty the results of experiment.

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the validation of numerical
simulation results of different simulations werenared to
assess the effect of including different approauth data in
the calculation of freezing point of zinc. Comparishas
been made between predictions obtained when using
different formulations/data that are available ihet
literature. For our purposes, the most importanirces of
uncertainty are due to interfacial area concemtnatdrag

thinteraction term, permeability coefficient, meshstte
thermophysical  properties (specific  heat, thermal
conductivity and latent heat) and partition equilim
coefficient[7].

The simulated geometry is shown in Fig. 2. The gias
selected to be representative of a laboratorywhkére the
melt is placed in a cylindrical graphite crucib&ehole in a

formulations are employed. Some of these assunptiomemovable graphite top allows a graphite thermomets|

might be found to be negligible, while others coudd
substantial, depending on various factors includihg
nature of the assumption being investigated. Edcihese

assumptions can be further separated into veryifgpec

factors, depending on their needs and the applitatiTo
estimate the effect of these assumptions addedasibd
terms in the equations. In general in order toebetvaluate
and understand models, the effects of these asmmapin
the resulting model predictions need to be invastid.

3. VALIDATION OF NUMERICAL SIMULATION

The quality and applicability of the uncertaintylua
depends mostly on understanding, critical analyaisd

completeness of all contributing factors of numeadric

simulation. It is best if the experiment is desigpairely to

validate a model, in which case one can eliminatere
sources by simplifying the geometry and materibls:. its

evaluation it is proposed the following plan.

Stepl: To verify that the equations are not vialgti

fundamental laws like conservation of matter and

energy.

Step 2: To describe the variables, parameters, uiations

assumptions and interrelationships between those.
To inform all types of numerical errors and
modeling errors. To identify uncertainty sources.
Concentrate efforts on significant sources of

uncertainty.

Step 3: To get two sets of data that cover thelevtamge of

the values found. Also, do it for alternatives
formulations and assumptions. It is important to

show the origins of its data for comparison.

to be axially located in the melt. The symmetrytivd cell
allows a % section of the geometry to be modelléz top,
bottom and the left wall of geometry the cell amsulated
while a temperature is prescribed at the right wie
crucible external radius). All walls are treatedhaa no-slip
condition and are impermeable to mass and species
transport. The melt is initially isothermal and ofieally
homogeneous. In all simulations presented in thjsep the
initial temperature was 5 K higher than the uiitys
temperature. At time = 0, the temperature of the crucible
external radius was altered to 692,677 K and it reasiced
with a freezing rate at about 0,01 K/s. The irteid| length
scale was assumed equal 0,2 mm and diffusion lerfght
all species are assumed equal 0,01 mm. These tipsatie
constants and assumed to be representantive af thaad

in literature for zinc point. The freezing curvesere
deduced from temperature in the themometer-wellereih
the sensing element of the thermometer is axiathpted.

200 mm

=

¥ 175 mm
x

Fig. 2. Geometry of cell zinc point.

a) Interfacial area concentration
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The interfacial
topology of the interfacial structures and is thmakted to
complex microscopic phenomena. It plays importalgs in
the modeling of the interfacial terms and needearwdeled
through supplementary relations, which can be agpezl
from either experiments or certain
concentrations. Two cases were investigated, thaunei
model and envelope dendrite model. The mixture tisde
model that treats both phases symmetrically. It

appropriate as a first approximation for more camrpl
problems [8]. In the dendrite envelope model theaar

concentration is modeled as equivalent cylinderes€ are
most appropriated for the columnar growth [9].

b) Drag interaction term

area concentration characterizes th

theoretical
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Fig. 4. Permeability coefficient effect a), €10 n?
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solid structure such as columnar dendritic crystalssually
very slow due to the high value of the interfacaka
concentration. Firstly, the dissipative interfacsitess was
modeled approximately by Darcy’s law [10]. In aditit the

permeability was converted into a drag coefficiigrif]. The

modeling of this term requires experimental caliora to

link the drag coefficient to microstructural parders.

However, a generalized expression was used to &wtithis

term (Fig. 3).
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Fig. 3. Drag interaction term effect.
c) Permeability coefficient

The permeability coefficient contains the interédarea
concentration implicitly. Assuming the permeability be
isotropic, it was evaluated from the Blake-Kosengdei.
This value is based on experimental measurementevio
liquid fractions and is based on analytical solsidor flow
through arrays of high liquid fractions. This motiels been
used extensively in solidification simulations witbnstant
permeability. Since permeability coefficient of deitic
structures is typically of the order of 1om?to 10 n? ten
simulations were run with these values (Fig. 4) [7]

Often, the first step after the development ofrtiazlel is
the mesh test. This test is used to refine theasarfand
volume mesh in regions of model, generating preivesy
finer elements. At the end of each run, the reswkse
compared. The final mesh was selected when therdiite
between the results of two successive curves of
solidification was lesser than experiment uncetyain
measurement. The final mesh contains 48 994 tatrahs
elements. The bulk of the geometry contains tatahlmer of
9 990 nodes (Fig. 5).

Fig. 5. Red triangular surface mesh covering th&asarof the
geometry.

e) Thermophysical properties/partition coefficient

Two different predicted curves of solidificationsing
two sets of data from the literature were compaféd
Results of the solidification using different ptotn
coefficients illustrated that the model is extreynsénsitive
to the specification of this parameter. The maglatwof
difference for the other cases (thermophysical @rigs)
was lesser than experiment measurement uncertainty.
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4. RESULTS (components of uncertainty) obtained from various
predictions. Some of these components are welhdéfand
The results of the evaluation of numerical simolatare  evaluated, while others are based on varying degode
summarized in Table.IThe estimates for the influence of knowledge and experience. A formal and rigorous
each component were deduced from the maximuravaluation is time consuming and expensive. Thegnke
difference between the results. The magnitude fiéréince  results show that the standard deviation of eachpcment
varies from 0,1 mK to 0,6 mK with standard uncetta is lower than uncertainty due to experiment, saehe a
from 0,02 mK to 0,17 mK. The uncertainty due toscope for further improvement in the model by riefinthe
experiment is 1 mK, which is higher than standardassumptions.
uncertainty of each component. Taken all togettiee,
present results should be viewed as an indicatfowhat REFERENCES
areas require more careful examination.
[ V.R. Voller, “A similarity solution for the solidiiation of a

Table 1. Maximum difference between experiment rmunterical multicomponent alloy”,International Journal of Heat and
simulation. Mass Transferyol. 40, r?.12, pp. 2869-2877, 1997.
[2] L.Wan, ANumerical Investigation of Directional Binary
Components Maximum Standard uncertaintyy Alloy Solidification Processes using a Volume-Agérg
difference ImK TechniqueMaster of Science, University of Cornell, 2003.
/mK [3] R.W. Logan, C.K. Nitta, “Verification and validatiogoals,
Interfacial area 06 017 methods, levels, and metrics"Conference Simulation
_ i ’ ’ Computer The Society for Modeling and Simulation
Drag interaction term 0.4 0.11 International, Montreal, Canada, 2003.
Permeability 01 0,02 [4] R.W. Logan. Nitta,“Validation, uncertainty and qtitative
coefficient reliability at confidence”(QRC),Journal AIAA pp.1337,
Mesh test 0,6 0,17 January 2003.
Thermophysical 0,6 0,17 [5] International Organization for Standardisati@uide to the
properties Expression of Uncertainty in MeasuremenGeneva,
Switzerland, 1995.
[6] I. Lira, Evaluating the Measurement Uncertainty -

Fundamentals and Practical Guidand®P Publishing Ltd,
London, 2002.

[71 D.M. Camarano,Analise do Efeito das Impurezas na
Temperatura dos Pontos fixos Termométricddesis,

5. CONCLUSIONS

Sufficient evaluation of numerical simulation bas=al

mathematical models is necessary to ensure thae thsing Federal University of Minas Gerais, Brazil, 2005.

the models can judge the adequacy of their techb&sis, [8] J. Ni, F.P. Incropera, “Extension of the comtim model for
appropriateness of their desired use, and confelene! of transport phenomena occurring during metal alloy
their predictions. Most validation exercises arealsimply solidification - I. The conservation equationsiit. Journal

to assess whether or not the model can be used Very Heat Mass Transfewol. 38, 1. 7, pp. 1271-1284, 1995.

specific purpose. In general, the validation of edoal [9 C.Y. Wang, C. Beckermann,"A multiphase solutefuifon
simulation is based on comparison with experiments. model for dendritic alloy solidification”, Metallurgical

weakness of this procedure is not to considering th Transactions Avol. 24A, pp. 2787-2802, 1993.
P 8 [10] S. Ganesan, D.R. Poirier, “Conservation of massl

uncertainty of experiment and numerical simulatidime momentum for the flow of interdendritic liquid dog
result of an experiment or a numerical simulatisnttie solidification”, Metallurgical Transactions Bvol. 21B, pp.
estimate of the true value of the measurand. Tihestesult 173-181, 1991.

is imperfect. We have shown that it is possiblestimate [11] W.K. Jones et al., “A numerical simulation dhe
the uncertainty of a numerical simulation. In th&se, the solidification process of a binary mixture in a Waped
estimation of uncertainty of numerical simulatientiased enclosure” Int. Journal Heat Mass Transfevol. 40, 1. 16,
on the combination of a number of influencing paeters pp. 3927-3946,1997.
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