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Abstract  In this paper we present a novel calibration 

method for an electromyogram (EMG) based human-
machine interface which estimates force. EMG based 
interfaces need a calibration process  in which 
musculoskeletal model parameters are determined for each 
individual user. Most conventional calibration methods 
which relate EMG signals to force magnitude require not 
only EMG measurement devices but also force sensors. Our 
goal here is to develop a calibration method that requires 
only EMG measurement devices. In our method, users are 
asked to apply stepwise force indicated by visual or auditory 
information. With a multiple linear regression model, the 
EMG magnitude is then related to that of the indicated force, 
instead of the force being measured by force sensors. With 
the users showing strong ability to exert linearly graded 
force, the force estimations of the linear regression model fit 
well with the indications, and estimated force correlated 
well with that of actual measured force. 
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1. INTRODUCTION 

Surface EMG signals are non-invasively sensed from the 
muscles by electrodes. Low-pass filtered EMG signals 
represent a motor command from brain. We can estimate our 
motion such as muscle’s tension, joint torque and stiffness 
by using a musculoskeletal model [1][2]. In this paper we 
focus on a force estimation method for a human-machine 
interface. Many researchers proposed human-machine 
interfaces using EMG [3][4]. Most of these interfaces need a 
calibration process because EMG patterns depend upon 
individual users. So the parameters of an EMG-force model  
must be adjusted before using the interface. Fig.1 shows a 
conventional EMG interface calibration flowchart. 
Calibration refers to an adjustment of the EMG-force model 
to balance measured force and estimated force. In the 
conventional method, a force sensor measures absolute 
magnitude of actual force [5][6]. In the proposed method, 
we substitute a relative force command for actual force as 

shown in Fig.2. If interface users control the force according 
to the command, we can calibrate the model parameters 
without a force sensor. In the following sections we  
describe the methods used to acquire the EMG data, 
determine the EMG-force model parameters and the 
experimental tasks for evaluation. 

 

Fig.1 Current calibration method 

 

Fig.2 Proposed calibration method 

2. EXPERIMENT 

The purpose of this study is to validate that the proposed 
calibration method provides a feasible force input interface. 
The experiments were conducted to determine the feasibility 
of achieving the following goals: 
Goal 1: The estimated force corresponds well with the 
commanded magnitude. 
Goal 2: The time-series of the estimated force correlates 
well with that of the actual force.  
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2.1 Experimental design and apparatus 

Eleven healthy subjects (10 male, 1 female) performed 
isometric contractions composed of flexion and extension 
about the wrist. The subject’s right forearm was fixed to a 
cuff, as shown in Fig.3. They were asked to control their 
wrist according to the experimenter’s force magnitude 
command. 

The command was randomly selected from the following 
three magnitude labels: 
Label1: base magnitude, which was determined for each 
subject 
Label2: twice lablel1’s magnitude 
Label3: 3 times label1’s magnitude 

All subjects were asked to concentrate on the force 
magnitude during the experiment. In each trial, subjects 
were asked to keep the force magnitude constant from start 
to stop, as shown in Fig.4. The notification of label, start and 
stop were given verbally. Experiment was composed of 180 
trials: 3 labels x 30 trials/label x 2 directions 
(flexion/extension). The first 30 trials of flexion and 
extension were used to calibrate the EMG-force model and 
remaining trials were used for evaluation. 

 

Fig.3 Experimental setup 

 

Fig.4 Protocol of force input task 

2.2 Data aquisition 

EMG signals were recorded at 2000 Hz from four 
electrodes attached to the surface of the subject’s right 
forearm. Measured muscles were the flexor carpi ulnaris 
(FCU), flexor carpi radialis (FCR), extensor carpi ulnaris 
(ECU) and extensor carpi radialis longus (ECRL). Subjects’ 
actual force was recorded at 200 Hz from a force sensor 
mounted under the cuff. 

2.3 EMG-force estimation model  

In this study we used a simple linear model to estimate 
force from EMG as shown in Equation (1), where b0 is a 
bias, b1 to b4 are conversion coefficients and x1 to x4 are low-
pass filtered EMG signals (x1: FCU, x2: FCR, x3: ECRL, x4: 
ECU). 
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We used a multiple regression algorithm to determine 
conversion coefficients. Since the subject’s actual force 
shape is unknown, we had to detect the timing for when the 
subject’s output reached commanded magnitude. We 
assume the peak EMG of mean agonist muscle as the timing 
shown in Fig.5. 
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force sensor Fig.5 Selection method of EMG data for regression 

2.4 Evaluation 

Due to the commanded force being a relative value, we 
could not compare estimated and measured force directly. 
So we used the following two indexes for evaluation. The 
first index is relative error defined as Equation (2), where yc 
is commanded force and  y  is estimated force. Small 

relative error indicates achievement of Goal 1. The second 
index is correlation coefficient which represents the time-
series similarity of estimated force to that of measured force. 
The value of correlation coefficient equalling one indicates 
achievement of Goal 2. 
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3. RESULT 

Fig.6 shows relative error. As the number of trials per 
label increased, mean relative error decreased and converged 
to about 0.35. Fig.7 shows correlation coefficient. Mean 
correlation coefficient reached 0.9 when the number of trials 
equaled two, then increased gradually. After the number of 
trial reached 5, mean correlation coefficient changed little. 
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Fig.6 Relative error with varying number of trials/label 
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Fig.7 Correlation coefficient with varying number of trials/label 
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Fig. 8 Relative error with varying  number of labels 
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Fig.9 Correlation coefficient with varying number of labels 

Fig.8 and Fig.9 show relative error and correlation 
coefficient with the number of trials fixed to 5. As the 
number of labels increased, the mean and S.D of relative 
error decreased. Fig.9 shows that correlation coefficient 
improved with the number of labels, just relative error did. 

4. DISCUSSION 

4.1 Appropriate number of labels and trials 

Fig.8 and Fig9 suggest that a calibration with 2 or 3 
labels is better than a single label calibration, which is 
similar to 100% maximum voluntary contraction (MVC) 
calibration. The indexes of estimation accuracy increased 
with the number of labels. But it is difficult to increase the 
number of labels. Fig.10 shows mean magnitude of 
measured force. The magnitudes were converted to relative 
values because the mean magnitudes of label 1 were 
different among individuals. As the labels increased, mean 
force magnitude differed from commanded magnitude and 
the variance increased. Thus if we used over 3 labels the 
estimation accuracy would be worse. 
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Fig.10 Relationship between commanded label and measured force 



4.2 Effect of co-contraction [3] H.Kawamoto, Lee Suwoong, S.Kanbe, Y.Sankai, Power assist 
method for HAL-3 using EMG-based feedback controller, 
Proceedings of IEEE International Conference on Systems, 
Man and Cybernetics, Vol.2, pp.1648-1653, 2003 

If we applied this method in practical use, a shorter 
calibration time would be beneficial. To shorten the time, 
one solution is to reduce the number of trials. Fig.6 and 
Fig.7 show the accuracy of estimation converged when the 
number of trials was around 5. For the number of labels, 3 is 
the best, according to standard deviation of relative error and 
correlation coefficient. 

[4] E.Costanza, S.A.Inverso, R.Allen, P.Maes, Intimate interfaces 
in action: assessing the usability and subtlety of emg-based 
motionless gestures, Proceedings of the SIGCHI conference 
on Human factors in computing systems. Tangibility, 
pp.819-828, 2007 

[5] C.J.Gatti, L.C.Doro, J.E.Langenderfer, A.G.Mell, J.D.Maratt, 
J.E.Carpenter, R.E.Hughes, Evaluation of three methods for 
determining EMG-muscle force parameter estimates for the 
shoulder muscles, Clinical Biomechanics 23, pp.166-174, 
2008 

Obtained parameters are illustrated in Table 1. b3 and b4 
which are the extensor parameters normally take negative 
values. Seeing as the number of trials was small, there were 
sometimes parameter misfittings such as too big a value or 
an inversion of sign. This suggests that the first trial’s data 
was inappropriate for regression. If the subject co-contracted 
muscles, actual joint torque would decrease against high 
EMG activity. So this contrariety might cause an error in 
parameter adjustment. Fig.11 shows normal EMG activity. 
The horizontal axis donates force in [N] and positive values 
indicate flexion. The vertical axis donates EMG activity 
normalized by 100% MVC. Flexor activities were high 
during flexion and low during extension. This appeared in 
the plots as asymmetric L-shapes. In contrast, symmetric V-
shape patterns appeared in a co-contracting subject’s plot 
shown in Fig.12. Activities of FCU and ECRL were high 
during flexion and extension. Therefore eliminating co-
contracted trials would reduce the number of trials. 

[6] M.J.M.Hoozemans, J.H.van Dieén, Predictrion of handgrip 
forces using surface EMG of forearm muscles, Journal of 
Electromyography and Kinesiology 15, pp.358-366, 2005 

Table 1 Obtained coefficients of subject I 

trials b0 b1 b2 b3 b4 

1 0.415 2.889 20.629 -30.888 -1.951 

2 0.021 1.684 10.943 8.967 -9.055 

3 -0.087 2.743 6.934 14.954 -10.252

4 -0.121 3.111 6.064 16.799 -10.265

5 0.036 5.297 9.956 -4.701 -7.077 

 
5. CONCLUSION 

We proposed a novel calibration method for an EMG-
force model without a force sensor. In this method, an 
interface user is commanded a force magnitude relatively, 
then the system determines the musculoskeletal model 
parameters using a multiple linear regression algorithm. We 
used agonist muscle EMG signals to detect the timing for 
when the user input the commanded force magnitude. 
Estimated force represented original force well. 3 labels and 
5 trials were needed to obtain sufficient estimation accuracy 
for all subjects. Elimination of bad data may shorten the 
calibration process.  
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Fig.11 An example of normal EMG activity 
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Fig.12 An example of co-contraction 
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